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Classical Field Approximation

Fountain in BEC
Helium fountain

J.F. Allen and H. Jones, Nature (London) 141, 243 (1938)
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Normal component:

e viscous

e S # 0 (heat transport)

Superfluid component:

e S =0 (no heat transport)
® no viscosity
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Superfluid fountain effect

Classical Field Approximation
Helium fountain

Fountain in BEC

e The system cannot achieve thermal equilibrium
Ti# T
e The system can achieve mechanical equilibrium
M1 = M2
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Superfluid fountain effect

System

e We theoretically investigate a possibility of an experimental
implementation of the helium fountain effect in a
Bose-Einstein condensate of alkali atoms

e We use the classical field approximation of the version
described in J. Phys. B 40, R1 (2007) and optimized for an
arbitrary trapping potential in Phys. Rev. A 81, 013629 (2010)

e We work with a cloud of Na atoms in the
1351/2, F = 1, mg = —1) state confined in an harmonic trap
with the frequencies wy = w, = 27 x 51Hz and
w; = 27w X 25Hz similarly like in Phys. Rev. Lett. 99, 260401
(2007)
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Classical Field Approximation

Hamiltonian in the second quantization framework:
M= [ it E ORI O+
1 ~ ~ ~ ~
5/ Brd®r UH(F OV (F, U - F) U7 t)U(F, t)

where

h2
Ho(F) = -5 V2 + V(7) ; U(F-T')=gd(F—7)

Commutation relations for bosons:

[U(7, ), U7 1) = 83(F— 7))

(7, 6), (7', t)] = [UF (7, 0), U+ (7, £)] = 0
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Classical Field Approximation

Classical Field Approximation

The Heisenberg equation of motion for the bosonic field operator
reads:

ih%@'(ﬁ t) = Ho(F)W (7, t) + g U (7, )U(F, t) (7, 1)

We expand the field operator in the basis of one-particle wave
functions:

V(7 t) = Zl/}k(F)ék(f)
p

We assume that some modes are macroscopically occupied and
replace operators by c-numbers:

ék(t) — ak(t)
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Classical Field Approximation

Classical Field Approximation

Taking into account only macroscopically occupied modes we
approximate the field operator by the complex wave function

kmax

ZWak ) — V(7 t )—Zwk

The classical field obeys the following equation:

O, £) = Ho(F)VI(F, 1) + gV (7 PV, )
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Classical Field Approximation

Classical Field Approximation

To split the classical field into the condensed and non-condensed
fractions we use Penrose and Onsager idea. The condensate
corresponds to the eigenvector of the one-particle density matrix
with the dominant eigenvalue.

1
PV T 1) = SV (7 V(1)
The mixed state appears after the averaging procedure:

5= (pW(F 7 t) 1R

To obtain the averaged density matrix we integrate along some
direction:
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Classical Field Approximation

Classical Field Approximation

We solve the eigenvalue problem:
- oo Ny * o
p(X7y7X Yo t) = Z W@k(xay7 t)QOk(X Y 7t)
k

The functions corresponding to macroscopically occupied modes:

Ny

¢k(x)y7 t): W@k(x)yv t)

The condensate wave function:

I N
‘UO(Xay7 t): WOSOO(X7y7 t)

The non-condensate density:

pT(X’Y7 t) :ﬁ(x’}/7 t)—|\U0(X,y, t)|2 q
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Our procedure

R o 1
V(F, t) = Vo(F) = Em(w)%xz +wly? +wiz%)
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Our procedure

V(7 t) = Vo(F) + VA(F, t) = Vo(F) + f(t) e >/
t—1t

A) = th—t1
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Our procedure
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Superfluid fountain effect
Classical Field Approximation
Fountain in BEC

Our procedure

V(F7 t) = VO(F) + Vl(Fa t) VZ(Fa t)
Va7, ) = 1 — () e+

t—t3
fL(t) = )
5(t) P—
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Fountain in BEC

Column density — condensate and non-condensate

CONDENSED EXCITED
PART PART

DIAGONAL
PART
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Fountain in BEC

Relative occupations — condensate and non-condensate

Relative numbers of atoms:
0 0o
0= [ d [ vy vt

Mm:/ w/ dy W (x, y, )V (x, ¥, )
0 —00

Relative occupations of modes:
Ny

nk(t) :‘/_ dX‘/_ dy ¢Z(X7y7 t)wk(x7)/7 t) = W
0 00
k0= [ o [ dy uiler i)

ﬁm:A w/ dy ¥} (%, v, ) (x, v, £)

q e
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Relative occupations — condensate and non-condensate

Relative occupations of condensate:

no(t)
ng(t)
n§ (t)

Relative occupations of non-condensate:

1—no(t)
ne(t) — ng(t)
nR(t) — ng (1)
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Relative occupations — condensate and non-condensate
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Chemical potential and condensate fraction
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Chemical potential and condensate fraction
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Fountain in BEC

Summary

® We have shown that the thermomechanical effect may be also observed in
present-day experiments with alkali atoms

® We have proposed a possible setup based on the harmonic trap widely
available in many labs

® The examined system exhibit two main features present in the superfluid
fountain i.e. the lack of thermal equilibrium and the presence of the
mechanical equilibrium at once

® \We have shown that the superfluid component in this system contains the
major condensate part and a few minor excited modes

® The border line between the superfluid modes and the normal modes is
drawn by the competition among the healing length of the particular
mode and the pipe width

® The superfluid flow is at least one order of magnitude faster than the flow
of the normal component.

® The slow flow of the normal component is the phase space efFectq
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Relative occupation and healing length

T B

01} A e Circles, squares, diamonds — three

WWWW highest occupied modes

e Lines without symbols — lower lying

001l .
M"’W\M modes

400 Ny 800 ° The h'eallng length along the pipe
] direction

&k(x,0,0) = 1/+4/8mapk(x,0,0)

e Superfluid condition

n(t)

&, (osc. units)
T

w
2

gk(oa 07 O) <

f . | entre for
4 6 8

Technologies

2 0 2
X (osc. units)

Tomasz Karpiuk BEC fountain



Fountain in BEC

Relative occupations — superfluid and non-superfluid

Functions corresponding to macroscopically occupied modes:

/N
¢k(x)y7 t) = Wkwk(x)yv t)

Relative occupation of superfluid:
ks

ns(t) = k(1)
k=0
ks

ks
ng(t) =Y () n§(e) =Y ng(t)
k=0 k=0
Relative occupation of non-superfluid:
nn(t) =1 — ns(t)

nk(t) = nt(t) — nk(t); k() = nR(e) — nf(t) LG

Tomasz Karpiuk BEC fountain

Technologies



Superfluid fountain effect
Classical Field Approximation
Fountain in BEC

Relative occupations — superfluid and non-superfluid

BEC — thermal
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Column density — superfluid and non-superfluid

Superfluid density:

ks
ps(xy, ) =D [n(x,y, 1)

k=0

Non-superfluid density:

pN(X’Y7 t) = ﬁ(X’Y7X?y; t) _,OS(X’Y7 t)
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Column density — superfluid and non-superfluid

PART

SUPERFLUID NON-SUPERFLUID
PART

DIAGONAL
PART

Technologies

Tomasz Karpiuk BEC fountain



	Superfluid fountain effect
	Classical Field Approximation
	Fountain in BEC

