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Propagation velocities

Phase velocity

vf =
ω

k

Energy transfer
velocity

Group velocity

vg =
dω

dk

Information transfer
velocity
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It can be proved that

vg =
c

1+ ω
2
dχ′(ω)
dω |ω=ω0

=
c

ng
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Analysis of group velocity index

The most interesting case is for ng ∈ (−∞, 1).
In this case we obtain a negative group velocity or group velocity
greater than c .
To have ng ∈ (−∞, 1) we should find such an atomic system in
which the dispersion is normal while absorption (or gain) being not
too strong.
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Propagation velocities
Electric susceptibility
Group velocity index

The Electric susceptibility

0

w
0 w

Absorption

Dispersion

Rysunek: A typical plot of χ (ω) (real part - dispersion and imaginary
part - absorption)
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Atomic systems
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Hamiltonian of the system

H =











∆p 0 Ωp3 Ωp4
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Hamiltonian

Hamiltonian of the system

H =











∆p 0 Ωp3 Ωp4

0 ∆c Ωc3 Ωc4

Ω
∗

p3 Ω
∗

c3 ∆ 0

Ω
∗

p4 Ω
∗

c4 0 −∆











Von Neumann’s equation:

i~
dρ

dt
= [H, ρ] + Λ
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The electric susceptibility in atomic systems

The electric susceptibility in atomic systems can be written as:

χ =
N
(

|d13|
2ρ13 + |d14|

2ρ14
)

ε0~Ωp

By solving the system of equations of motion for density matrix
and putting the solutions to the expression above we obtain graphs
for dispersion and absorption depending on following parameters:
∆,∆c ,Rop,Ωc ,Ωp as a function of ∆p.
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without optical pump
With optical pump
vg ∈ (−∞, 0)
vg ∈ (c,∞)
Second derivative approximation
Third derivative approximation

Results - without optical pump

∆ = 2 · 10−9,∆c = 1 · 10−9, Ec = 6 · 10−10, Ep = 3 · 10−12
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Optical pump influence on dispersion

−5 0 5

x 10
−9

−8

−6

−4

−2

0

2

4

6

8
x 10

−3

∆
p

 

 
real χ 3
real χ 4

Rysunek: Without optical pump
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Rysunek: With optical pump Rop = 2 · 10−9
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without optical pump
With optical pump
vg ∈ (−∞, 0)
vg ∈ (c,∞)
Second derivative approximation
Third derivative approximation

Optical pump influence on absorption
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Rysunek: Without optical pump
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Rysunek: With optical pump Rop = 2 · 10−9
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vg ∈ (−∞, 0)
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Results - vg ∈ (−∞, 0)

Analysis of dispersion

∆ = 2 · 10−9,∆c = 1 · 10−9, Ec = 7 · 10−9, Ep = 3 · 10−12, Rop = 2 · 10−11
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Results - vg ∈ (−∞, 0)

Analysis of dispersion

∆ = 2 · 10−9,∆c = 1 · 10−9, Ec = 7 · 10−9, Ep = 3 · 10−12, Rop = 2 · 10−11
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Results - vg ∈ (−∞, 0)

Analysis of dispersion

∆ = 2 · 10−9,∆c = 1 · 10−9, Ec = 7 · 10−9, Ep = 3 · 10−12, Rop = 2 · 10−11
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With optical pump
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Results - vg ∈ (−∞, 0)

Analysis of absorption

∆ = 2 · 10−9,∆c = 1 · 10−9, Ec = 7 · 10−9, Ep = 3 · 10−12, Rop = 2 · 10−11
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Results - vg ∈ (−∞, 0)

Analysis of absorption

∆ = 2 · 10−9,∆c = 1 · 10−9, Ec = 7 · 10−9, Ep = 3 · 10−12, Rop = 2 · 10−11
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without optical pump
With optical pump
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Second derivative approximation
Third derivative approximation

Results - vg ∈ (−∞, 0)

Analysis of absorption

∆ = 2 · 10−9,∆c = 1 · 10−9, Ec = 7 · 10−9, Ep = 3 · 10−12, Rop = 2 · 10−11

−4 −2 0 2 4 6 8

x 10
−9

−15

−10

−5

0

5

x 10
−7

∆
p

 

 
imag χ 3
imag χ 4

Paulina Grochowska Superluminal pulse propagation



Motivation
Calculations
Results

Interpretation
Summary

without optical pump
With optical pump
vg ∈ (−∞, 0)
vg ∈ (c,∞)
Second derivative approximation
Third derivative approximation

Results - vg ∈ (−∞, 0)

Analysis of pulse propagation
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Analysis of pulse propagation

-1.5´1011
-1.´1011

-5.´1010 0 5.´1010 1.´1011 1.5´1011

0.5

1.0

1.5

t=2.0*10^8 a.u.

Paulina Grochowska Superluminal pulse propagation



Motivation
Calculations
Results

Interpretation
Summary

without optical pump
With optical pump
vg ∈ (−∞, 0)
vg ∈ (c,∞)
Second derivative approximation
Third derivative approximation

Results - vg ∈ (−∞, 0)

Analysis of pulse propagation
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Results - vg ∈ (−∞, 0)

Analysis of pulse propagation
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Analysis of pulse propagation
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Results - vg ∈ (c ,∞)

Analysis of dispersion

∆ = 2 · 10−9 ,∆c = 5 · 10−9, Ec = 1 · 10−11, Ep = 3 · 10−12,Rop = 14 · 10−11, ng = 0.95
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Analysis of dispersion

∆ = 2 · 10−9 ,∆c = 5 · 10−9, Ec = 1 · 10−11, Ep = 3 · 10−12,Rop = 14 · 10−11, ng = 0.95
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Results - vg ∈ (c ,∞)

Analysis of dispersion

∆ = 2 · 10−9 ,∆c = 5 · 10−9, Ec = 1 · 10−11, Ep = 3 · 10−12,Rop = 14 · 10−11, ng = 0.95
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Results - vg ∈ (c ,∞)

Analysis of absorption

∆ = 2 · 10−9 ,∆c = 5 · 10−9, Ec = 1 · 10−11, Ep = 3 · 10−12,Rop = 14 · 10−11, ng = 0.95
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−5 0 5

x 10
−9

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
x 10

−8

∆
p

 

 
imag χ 3
imag χ 4

Paulina Grochowska Superluminal pulse propagation



Motivation
Calculations
Results

Interpretation
Summary

without optical pump
With optical pump
vg ∈ (−∞, 0)
vg ∈ (c,∞)
Second derivative approximation
Third derivative approximation
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Analysis of absorption
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Second derivative approximation

An example of an impulse propagating through a sample with a negative

group velocity for electric susceptibility approximated by:

χ̃(∆p)=χ(0)+
dχ(0)
dω

(∆p)+ 1
2
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Third derivative approximation

A pulse propagating in a subluminal regime. The Brillouin precursor

magnified by the factor of 5000 is shown. The precursor was obtained for

electric susceptibility approximated by:

χ̃(∆p)=χ(0)+
dχ(0)
dω

(∆p)+ 12
d2χ(0)

d∆2p
(∆p)2+ 16

d3χ′(0)

d∆3p
(∆p)3
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Interpretation on superluminal propagation

Problems:

Conservation of energy

There is an exchange of energy between the medium and the
front and back parts of the pulse, leading to the pulse
advancement in presence of the optical pump.
G. Diener, Phys. Lett. A 235 (1997) 118-124
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Interpretation on superluminal propagation

Problems:

Conservation of energy

There is an exchange of energy between the medium and the
front and back parts of the pulse, leading to the pulse
advancement in presence of the optical pump.
G. Diener, Phys. Lett. A 235 (1997) 118-124

Special theory of relativity
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Interpretation on superluminal propagation

Problems:

Conservation of energy

There is an exchange of energy between the medium and the
front and back parts of the pulse, leading to the pulse
advancement in presence of the optical pump.
G. Diener, Phys. Lett. A 235 (1997) 118-124

Special theory of relativity

The group velocity do not represent velocity of signal, or
information. An experimental apparatus can only trace the
bulk of the pulse, which does not constitute a signal.
P. W. Milonni, J. Phys. B: At. Mol. Opt. Phys. 35 (2002)
R31-R56
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Interpretation on superluminal propagation

Problems:

Conservation of energy

There is an exchange of energy between the medium and the
front and back parts of the pulse, leading to the pulse
advancement in presence of the optical pump.
G. Diener, Phys. Lett. A 235 (1997) 118-124

Special theory of relativity

The group velocity do not represent velocity of signal, or
information. An experimental apparatus can only trace the
bulk of the pulse, which does not constitute a signal.
P. W. Milonni, J. Phys. B: At. Mol. Opt. Phys. 35 (2002)
R31-R56

Effects are observed only for analytical pulses.
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In high detuning regimes ∆c > 3 · 10
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1 vg > c for ng ∈ (0, 1)

In high detuning regimes ∆c > 3 · 10
−9 for ∆ = 2 · 10−9

With relatively weak coupling field Ec = 1 · 10−11 for Ep = 3 · 10−10

In a narrow range of frequency

2 Negative vg for ng ∈ (−∞,−1)
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Summary

There have been demonstrated two kinds of superluminal pulses
(in terms of group velocity):
1 vg > c for ng ∈ (0, 1)

In high detuning regimes ∆c > 3 · 10
−9 for ∆ = 2 · 10−9

With relatively weak coupling field Ec = 1 · 10−11 for Ep = 3 · 10−10

In a narrow range of frequency

2 Negative vg for ng ∈ (−∞,−1)
In both high and weakly detuning regimes
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2 Negative vg for ng ∈ (−∞,−1)
In both high and weakly detuning regimes

For relatively strong coupling field Ec = 3 · 10−9 for Ep = 3 · 10−10
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There have been demonstrated two kinds of superluminal pulses
(in terms of group velocity):
1 vg > c for ng ∈ (0, 1)
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−9 for ∆ = 2 · 10−9

With relatively weak coupling field Ec = 1 · 10−11 for Ep = 3 · 10−10
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2 Negative vg for ng ∈ (−∞,−1)
In both high and weakly detuning regimes

For relatively strong coupling field Ec = 3 · 10−9 for Ep = 3 · 10−10

In a wide range of frequency

In both cases we can control the value of the group velocity index
by changing the amplitude of coupling field or incoherent optical
pump.
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All the results have been obtained in cooperation with:

prof. A. Raczyński1

prof. J. Zaremba1

dr S. Zielińska-Kaniasty2

1Institute of Physics, Nicolaus Copernicus University, Toruń
2Institute of Mathematics and Physics, University of Technologies and Life

Sciences, Bydgoszcz
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Thank you for your attention
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