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Outline

• Disorder in ultracold bosonic gases.

• Spin-1 interacting bosons in a lattice in the strong interaction regime.
Bose-Hubbard model.

• Effects of the spin interaction:
• Stabilization of MI phase

• Singlet BG

• Possible occurrence of direct SF-MI transitions for disordered interactions



Strongly correlated bosons

Ultracold atoms in optical lattices:

• Control over the periodic crystal potential and particles’ interactions

• Described by simple and controllable Hamiltonians

• Quantum simulations of complex systems

In optical potentials spin degrees of freedom influence the interactions.
Spin-1 atoms (T=0): 23Na, 39K, 87Rb · · ·
Model: Spin-1 Bose-Hubbard Hamiltonian

• MF/Gutzwiller [Imambekov et al., Phys. Rev. A 68, 63602 (2003) ]

[Kimura et al., Phys. Rev. Lett. 88, 110403 (2005) ]

[Pai et al., Phys. Rev. B 77, 14503 (2008) ]

• QMC [G. Batrouni et al., Phys. Rev. Lett. 102, 140402 (2009) ]

• DMRG [M. Rizzi et al., Phys. Rev. Lett. 95, 240404 (2005) ]
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Realization of disorder in ultracold atomic gases

Disorder can be produced and controlled:

• Adding a disorder potential created by a speckle radiation pattern to the main
potential
[Horak et al., Phys. Rev. A 58, 3953 (1998) ]

[Boiron et al., Eur. Phys. J. D 7, 373 (1999) ]

[Billy et al., Nature 453, 891 (2008) ]

• Bicromatic lattices (quasi random)
[Fallani et al., Phys. Rev. Lett. 98, 130404 (2007) ]

[Roati et al., Nature 453, 895 (2008) ]

[Damski et al., Phys. Rev. Lett. 91, 080403 (2003) ]

[Diener et al., Phys. Rev. A. 64, 033416 (2001) ]

• Using an admixture of different atomic species randomly trapped in sites of the
sample and acting as impurities (Bernoulli potentials)
[Gavish et al., Phys. Rev. Lett. 95, 020401 (2005) ]

• Employing Feschbach resonances in random magnetic fields (Disorder in the inter-
action)
[Gimperlein et al., Phys. Rev. Lett. 95, 170401 (2005) ]



Spin-1 Bose-Hubbard Model

• Alkali atoms in optical lattice.

• Spin degrees of freedom: manifold of Zeeman hyperfine energy levels.

• 23Na 87Rb: nuclear + electronic angular momentum S = 3/2⊗ 1/2→ 1⊕ 2.
We consider the case S = 1.

• Contact two-body interactions

Ĥ = −t
∑

〈i,j〉,σ=0,±1

(
â†iσ âjσ +H.c.

)
︸ ︷︷ ︸

T̂

+
∑
i

[
U0

2
n̂i(n̂i − 1) +

U2

2

(
Ŝ2
i − 2n̂i

)
− µn̂i

]
︸ ︷︷ ︸

Ĥ0 =
∑
i Ĥ

0
i

On each site:
n̂ =

∑
σ n̂σ

Bose statistics: S + n even [Wo et al., Phys. Rev. A 54, 4534

(1996) ]

U0 = a0 + 2a2

U2 = a2 − a0

aS : proportional to s-wave scattering length corresponding to

the channel with total spin S

Diagonal disorder:
∑
i Ĥdis(εi) uniform distribution with −∆ ≤ εi ≤ ∆.

εi sums to µ, U2, U0, a0 or a2



Mean-Field approach

Nonperturbative Gutzwiller ansatz (GA)

|ψ〉 =
M∏
i=1

|φi〉

• The coefficients of |φi〉i are the variational coefficients to be determined by
minimizing the BH Hamiltonian.

• Corresponds to the Mean Field approximation but takes into account
inhomogeneous lattices.

• Becomes exact for infinite dimension. We consider the 2D case.

• In the dirty case,translational invariance is broken

• Study of averaged density fluctuations and condensate fraction to reconstruct the
phase diagram



Disordered ultracold bosonic gases: strong interaction

• Mott Insulator (MI): incompressible κ = ∂ρ
∂µ

= 0, zero condensate fraction ρC

• Superfluid (SF): κ 6= 0, ρC 6= 0

• Bose Glass (BG): κ 6= 0, ρC = 0 (degeneracy between states with different
densities)

Taken

from [Fallani et al., arXiv , 0804.2888 (2008) ]

µ: chemical potential
U : interaction
J : hopping

disorder in the local potential

with fluctuation ∆



Dirty boson problem

Is the direct transition between the MI and SF phases possible in the presence of
disorder? [M. P. A. Fisher et al. , Phys. Rev. B 40, 546 (1989) ]

• A rigorous treatment has been given in [L. Pollet et al., Phys. Rev. Lett. 103, 140402 (2009) ] by
means of a theorem of inclusions.

• Consequence: If a generic bounded disorder produces a phase transition from a
phase A to another B for a critical value of the bound ∆c, then if one of the
phase is gapless the other one has to be gapless as well. (SF-BG transition)

• Exception: Griffiths transitions. ∆c does not depend on details of the disorder
distribution. MI-BG trasition given by a concentration of rare regions where
disorder mimics a homogeneous changing in the clean Hamiltonian. Gapless (SF)
domains are distant (no phase coherence).

• If ∆c ∝ Egap, near the clean MI-SF boundaries BG phase appears for disorder of
any strength → no direct SF-MI transition.

• What happens if ∆c remains finite even for vanishing Egap?
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Atomic limit (t→ 0)

E0 = −µn+
1

2
U0n(n− 1) +

1

2
U2 [S(S + 1)− 2n]

• Single site problem→many-body, commen-
surate lattice.

• Boundaries → E0(n) = E0(n+ 1)

• Antiferromagnetic case U2 > 0 (Ex. 23Na,
85Rb)
• Smaller possible value of S:

S = 0 for even lobes
S = 1 for odd lobes

• Odd lobes shrink and for U2/U0 > 0.5
they disappear.

• Even lobes enlarge and translate for
U2 > 0.5.

• Ferromagnetic case U2 < 0 (Ex. 87Rb)

• Larger possible value of S: S = n
• All lobes shrink. Similar to the scalar case

(Renormalized U0)

Ground state density phase diagram in the
atomic limit

• Tracing horizontal lines in the diagram one obtains
the “basis” of the MI lobes in the µ/U0 − t/U0
phase diagram with U2 fixed

• Disorder: fluctuations along some direction
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Disorder in µ

• Horizontal fluctuations in the t = 0 phase diagram.

• Disorder destroys odd lobes if ∆ > ∆o = U0/2 − U2

• Accuracy decreases near the tips. Because:

• MF approximation [Bissbort, EPL 86, 50007 (2009) ]

• Very thin BG region predicted [Gurarie et al., Phys. Rev. B

80, 214519 (2009) ]

• BG phase:
Nematic for U2/U0 < 0.5
Singlet for U2/U0 > 0.5

ρC

Figure 1: ∆/U0 = 0.3.

(a)U2/U0 = 0.02,

(b)U2/U0 = 0.1

(c)U2/U0 = 0.3.
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Disorder in U2

• Vertical fluctuations in the atomic phase
diagram

• ∆ < |U2|: no mixing between ferro and
antiferro regions

• Ferro: similar to the scalar case.

• Antiferro: the MI lobes become more unstable
increasing n. , disappearing for for
n > (U0 + U2 + ∆)/(2∆)

• For U2/U0 < 0.5 A small disorder does not
mix n and n+ 1 occupation lobes with n-odd.
Finite ∆c even for vanishing gap: direct MI-SF
transition

Figure 2: ∆/U0 = 0.06. U2 = ±0.1U0.



Disorder in U2

• Vertical fluctuations in the atomic phase
diagram

• ∆ < |U2|: no mixing between ferro and
antiferro regions

• Ferro: similar to the scalar case.

• Antiferro: the MI lobes become more unstable
increasing n. , disappearing for for
n > (U0 + U2 + ∆)/(2∆)

• For U2/U0 < 0.5 A small disorder does not
mix n and n+ 1 occupation lobes with n-odd.
Finite ∆c even for vanishing gap: direct MI-SF
transition

Figure 2: ∆/U0 = 0.06. U2 = ±0.1U0.



Disorder in a2

Boundaries of the first lobe lie on fluctuations’
direction Direct MI-SF transition.BG near the
tip.

Figure 3: ∆/U0 = 0.04, U2/U0 = 0.1.
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Disorder in U0

• Lobes with n > (U0 + ∆)/2∆ disappear
while the first one remains stable

• Direct MI-SF transition before the first
lobe.

• Also observed in the 1D scalar case by
QMC and SCE [Gimperlein et a., Phys. Rev. Lett. 95,

170401 (2005) ]

Figure 4: ∆/U0 = 0.25 .

(a)U2/U0 = 0.0 (b)U2/U0 = 0.1
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Disorder in a0

Figure 5: ∆/U0 = 0.04, U2/U0 = 0.1.

Ferromagnetic regime: all the boundaries lie on
fluctuation directions and no BG appears.
Distinction between scalar and spinor case with
ferromagnetic spin correlations, where disorder
in the s = 0 scattering channel only is not
enough to produce BG.
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Summary

Main results:

• Spin-1 2D BH model in presence of diagonal disorder has been studied within the
Gutzwiller MF approximation and in the atomic limit

• Antiferromagnetic spin coupling gives a phase diagram qualitatively different from
the scalar case

• Odd MI lobes disappear for sufficiently large spin coupling. In this case disorder
produces BG of spin singlets

• Disorder can also destroy odd lobes, even if the spin coupling cannot in the clean
case. In this case BG is nematic

• Direct SF-MI is observed in some cases (disorder in U2, a0, a2)

Perspectives:

• Cluster MF

• Spin properties inside the MI phases. Frustration?

[ M.  La̧cki, S. Paganelli, V. Ahufinger, A. Sanpera, J. Zakrzewski, Phys. Rev. A 83, 013605 (2011) ]

[ S. Paganelli, M.  La̧cki, V. Ahufinger, J. Zakrzewski, A. Sanpera, arXiv , 1105.2746 (2011) ]


