Disordered spin-1 Bose-Hubbard model

Simone Paganelli (UAB - Universitat Autónoma de Barcelona)

In collaboration with M. Łącki, J. Zakrzewski (University of Kraków) V. Ahufinger A. Sanpera (UAB)

Kraków 2011

Outline

- Disorder in ultracold bosonic gases.
- Spin-1 interacting bosons in a lattice in the strong interaction regime. Bose-Hubbard model.
- Effects of the spin interaction:
 - Stabilization of MI phase
 - Singlet BG
 - · Possible occurrence of direct SF-MI transitions for disordered interactions

Strongly correlated bosons

Ultracold atoms in optical lattices:

- Control over the periodic crystal potential and particles' interactions
- Described by simple and controllable Hamiltonians
- Quantum simulations of complex systems

Strongly correlated bosons

Ultracold atoms in optical lattices:

- Control over the periodic crystal potential and particles' interactions
- Described by simple and controllable Hamiltonians
- Quantum simulations of complex systems

In optical potentials spin degrees of freedom influence the interactions. Spin-1 atoms (T=0): 23 Na, 39 K, 87 Rb \cdots Model: Spin-1 Bose-Hubbard Hamiltonian

 MF/Gutzwiller [Imambekov et al., Phys. Rev. A 68, 63602 (2003)] [Kimura et al., Phys. Rev. Lett. 88, 110403 (2005)]
 [Pai et al., Phys. Rev. B 77, 14503 (2008)]

- QMC [G. Batrouni et al., Phys. Rev. Lett. 102, 140402 (2009)]
- DMRG [M. Rizzi et al., Phys. Rev. Lett. 95, 240404 (2005)]

Realization of disorder in ultracold atomic gases

Disorder can be produced and controlled:

 Adding a disorder potential created by a speckle radiation pattern to the main potential

[Horak et al., Phys. Rev. A 58, 3953 (1998)] [Boiron et al., Eur. Phys. J. D 7, 373 (1999)]

[Billy et al., Nature 453, 891 (2008)]

Bicromatic lattices (quasi random)

[Fallani et al., Phys. Rev. Lett. **98**, 130404 (2007)] [Roati et al., Nature **453**, 895 (2008)] [Damski et al., Phys. Rev. Lett. **91**, 080403 (2003)] [Diener et al., Phys. Rev. A. **64**, 033416 (2001)]

- Using an admixture of different atomic species randomly trapped in sites of the sample and acting as impurities (Bernoulli potentials)
 [Gavish et al., Phys. Rev. Lett. 95, 020401 (2005)]
- Employing Feschbach resonances in random magnetic fields (Disorder in the interaction)

[Gimperlein et al., Phys. Rev. Lett. 95, 170401 (2005)]

Spin-1 Bose-Hubbard Model

- Alkali atoms in optical lattice.
- Spin degrees of freedom: manifold of Zeeman hyperfine energy levels.
- ²³Na ⁸⁷Rb: nuclear + electronic angular momentum $S = 3/2 \otimes 1/2 \rightarrow 1 \oplus 2$. We consider the case S = 1.
- Contact two-body interactions

$$\hat{H} = -t \sum_{\langle i,j \rangle, \sigma=0,\pm1} \left(\hat{a}_{i\sigma}^{\dagger} \hat{a}_{j\sigma} + H.c. \right) + \sum_{i} \left[\frac{U_0}{2} \hat{n}_i (\hat{n}_i - 1) + \frac{U_2}{2} \left(\hat{\mathbf{S}}_i^2 - 2\hat{n}_i \right) - \mu \hat{n}_i \right]$$

$$\hat{T}$$

$$\hat{H}^0 = \sum_i \hat{H}_i^0$$
On each site:

$$\hat{n} = \sum_{\sigma} \hat{n}_{\sigma}$$
U_0 = a_0 + 2a_2
U_2 = a_2 - a_0

 $n = \sum_{\sigma} n_{\sigma}$ Bose statistics: S + n even [Wo et al., Phys. Rev. A 54, 4534 (1996)]

 $a_S\colon$ proportional to s-wave scattering length corresponding to the channel with total spin S

 $\begin{array}{l} \underline{\text{Diagonal disorder:}}_{\epsilon_i \text{ sums to } \mu, \ U_2, \ U_0, \ a_0 \ \text{or} \ a_2 \end{array} \\ \text{ or } a_2 \end{array} \\ \begin{array}{l} \text{disorder:} \\ \underline{\text{disorder:}}_{\epsilon_i \text{ sums to } \mu, \ U_2, \ U_0, \ a_0 \ \text{or} \ a_2 \end{array} \\ \end{array}$

Mean-Field approach

Nonperturbative Gutzwiller ansatz (GA)

$$|\psi
angle = \prod_{i=1}^{M} |\phi_i
angle$$

- The coefficients of $|\phi_i\rangle_i$ are the variational coefficients to be determined by minimizing the BH Hamiltonian.
- Corresponds to the Mean Field approximation but takes into account inhomogeneous lattices.
- Becomes exact for infinite dimension. We consider the 2D case.
- In the dirty case, translational invariance is broken
- Study of averaged density fluctuations and condensate fraction to reconstruct the phase diagram

Disordered ultracold bosonic gases: strong interaction

- Mott Insulator (MI): incompressible $\kappa = \frac{\partial \rho}{\partial \mu} = 0$, zero condensate fraction ρ_C
- Superfluid (SF): $\kappa \neq 0$, $\rho_C \neq 0$
- Bose Glass (BG): $\kappa \neq 0$, $\rho_C = 0$ (degeneracy between states with different densities)

from [Fallani et al., arXiv , 0804.2888 (2008)]

Is the direct transition between the MI and SF phases possible in the presence of disorder? [M. P. A. Fisher et al. , Phys. Rev. B 40, 546 (1989)]

• A rigorous treatment has been given in [L. Pollet et al., Phys. Rev. Lett. 103, 140402 (2009)] by means of a theorem of inclusions.

- A rigorous treatment has been given in [L. Pollet et al., Phys. Rev. Lett. 103, 140402 (2009)] by means of a theorem of inclusions.
- Consequence: If a generic bounded disorder produces a phase transition from a phase A to another B for a critical value of the bound Δ_c, then if one of the phase is gapless the other one has to be gapless as well. (SF-BG transition)

- A rigorous treatment has been given in [L. Pollet et al., Phys. Rev. Lett. 103, 140402 (2009)] by means of a theorem of inclusions.
- Consequence: If a generic bounded disorder produces a phase transition from a phase A to another B for a critical value of the bound Δ_c, then if one of the phase is gapless the other one has to be gapless as well. (SF-BG transition)
- Exception: Griffiths transitions. Δ_c does not depend on details of the disorder distribution. MI-BG trasition given by a concentration of rare regions where disorder mimics a homogeneous changing in the clean Hamiltonian. Gapless (SF) domains are distant (no phase coherence).

- A rigorous treatment has been given in [L. Pollet et al., Phys. Rev. Lett. 103, 140402 (2009)] by means of a theorem of inclusions.
- Consequence: If a generic bounded disorder produces a phase transition from a phase A to another B for a critical value of the bound Δ_c, then if one of the phase is gapless the other one has to be gapless as well. (SF-BG transition)
- Exception: Griffiths transitions. Δ_c does not depend on details of the disorder distribution. MI-BG trasition given by a concentration of rare regions where disorder mimics a homogeneous changing in the clean Hamiltonian. Gapless (SF) domains are distant (no phase coherence).
- If $\Delta_c \propto E_{gap}$, near the clean MI-SF boundaries BG phase appears for disorder of any strength \rightarrow no direct SF-MI transition.

- A rigorous treatment has been given in [L. Pollet et al., Phys. Rev. Lett. 103, 140402 (2009)] by means of a theorem of inclusions.
- Consequence: If a generic bounded disorder produces a phase transition from a phase A to another B for a critical value of the bound Δ_c, then if one of the phase is gapless the other one has to be gapless as well. (SF-BG transition)
- Exception: Griffiths transitions. Δ_c does not depend on details of the disorder distribution. MI-BG trasition given by a concentration of rare regions where disorder mimics a homogeneous changing in the clean Hamiltonian. Gapless (SF) domains are distant (no phase coherence).
- If $\Delta_c \propto E_{gap}$, near the clean MI-SF boundaries BG phase appears for disorder of any strength \rightarrow no direct SF-MI transition.
- What happens if Δ_c remains finite even for vanishing E_{gap} ?

Atomic limit $(t \to 0)$

$$E_0 = -\mu n + \frac{1}{2}U_0n(n-1) + \frac{1}{2}U_2\left[S(S+1) - 2n\right]$$

- Single site problem → many-body, commensurate lattice.
- Boundaries $\rightarrow E_0(n) = E_0(n+1)$
- Antiferromagnetic case $U_2 > 0$ (Ex. ²³Na, ⁸⁵Rb)
 - Smaller possible value of S: S = 0 for even lobes
 - S = 1 for odd lobes
 - Odd lobes shrink and for $U_2/U_0 > 0.5$ they disappear.
 - Even lobes enlarge and translate for $U_2 > 0.5$.
- Ferromagnetic case $U_2 < 0$ (Ex. ⁸⁷Rb)
 - Larger possible value of S: S = n
 - All lobes shrink. Similar to the scalar case (Renormalized U_0)

Ground state density phase diagram in the atomic limit

Atomic limit $(t \to 0)$

$$E_0 = -\mu n + \frac{1}{2}U_0n(n-1) + \frac{1}{2}U_2\left[S(S+1) - 2n\right]$$

- Single site problem → many-body, commensurate lattice.
- Boundaries $\rightarrow E_0(n) = E_0(n+1)$
- Antiferromagnetic case $U_2 > 0$ (Ex. ²³Na, ⁸⁵Rb)
 - Smaller possible value of S:
 S = 0 for even lobes
 - S = 1 for odd lobes
 - Odd lobes shrink and for $U_2/U_0 > 0.5$ they disappear.
 - Even lobes enlarge and translate for $U_2 > 0.5$.
- Ferromagnetic case U₂ < 0 (Ex. ⁸⁷Rb)
 - Larger possible value of S: S = n
 - All lobes shrink. Similar to the scalar case (Renormalized U_0)

Ground state density phase diagram in the atomic limit

• Tracing horizontal lines in the diagram one obtains the "basis" of the MI lobes in the $\mu/U_0-t/U_0$ phase diagram with U_2 fixed

Atomic limit $(t \to 0)$

$$E_0 = -\mu n + \frac{1}{2}U_0n(n-1) + \frac{1}{2}U_2\left[S(S+1) - 2n\right]$$

- Single site problem → many-body, commensurate lattice.
- Boundaries $\rightarrow E_0(n) = E_0(n+1)$
- Antiferromagnetic case $U_2 > 0$ (Ex. ²³Na, ⁸⁵Rb)
 - Smaller possible value of S:
 S = 0 for even lobes
 - S = 1 for odd lobes
 - Odd lobes shrink and for $U_2/U_0 > 0.5$ they disappear.
 - Even lobes enlarge and translate for $U_2 > 0.5$.
- Ferromagnetic case $U_2 < 0$ (Ex. ⁸⁷Rb)
 - Larger possible value of S: S = n
 - All lobes shrink. Similar to the scalar case (Renormalized U_0)

Ground state density phase diagram in the atomic limit

Disorder: fluctuations along some direction

Disorder in μ

• Horizontal fluctuations in the t = 0 phase diagram.

FIGURE 1: $\Delta/U_0 = 0.3$. (a) $U_2/U_0 = 0.02$, (b) $U_2/U_0 = 0.1$ (c) $U_2/U_0 = 0.3$.

Disorder in μ

Horizontal fluctuations in the t = 0 phase diagram.

3

- Disorder destroys odd lobes if $\Delta > \Delta_o = U_0/2 U_2$
- Accuracy decreases near the tips. Because:

μ/U_n

2

1

- MF approximation [Bissbort, EPL 86, 50007 (2009)]
- Very thin BG region predicted [Gurarie et al., Phys. Rev. B 80, 214519 (2009)]

4

BG phase:

1.5

1

0.5

0

-0.5

-1 L

J₂/U₀

Nematic for $U_2/U_0 < 0.5$ Singlet for $U_2/U_0 > 0.5$

FIGURE 1: $\Delta/U_0 = 0.3$. (a) $U_2/U_0 = 0.02$, (b) $U_2/U_0 = 0.1$ (c) $U_2/U_0 = 0.3$.

 ρ_C

- Vertical fluctuations in the atomic phase diagram
- $\Delta < |U_2|$: no mixing between ferro and antiferro regions
- Ferro: similar to the scalar case.
- Antiferro: the MI lobes become more unstable increasing n., disappearing for for $n > (U_0 + U_2 + \Delta)/(2\Delta)$
- For $U_2/U_0 < 0.5$ A small disorder does not mix n and n+1 occupation lobes with n-odd. Finite Δ_c even for vanishing gap: direct MI-SF transition

FIGURE 2: $\Delta/U_0 = 0.06$. $U_2 = \pm 0.1U_0$.

- Vertical fluctuations in the atomic phase diagram
- $\Delta < |U_2|$: no mixing between ferro and antiferro regions
- Ferro: similar to the scalar case.
- Antiferro: the MI lobes become more unstable increasing n., disappearing for for $n > (U_0 + U_2 + \Delta)/(2\Delta)$
- For $U_2/U_0 < 0.5$ A small disorder does not mix n and n+1 occupation lobes with n-odd. Finite Δ_c even for vanishing gap: direct MI-SF transition

FIGURE 2: $\Delta/U_0 = 0.06$. $U_2 = \pm 0.1U_0$.

FIGURE 3: $\Delta/U_0 = 0.04$, $U_2/U_0 = 0.1$.

Boundaries of the first lobe lie on fluctuations' direction Direct MI-SF transition.BG near the tip.

Boundaries of the first lobe lie on fluctuations' direction Direct MI-SF transition.BG near the tip.

FIGURE 3: $\Delta/U_0 = 0.04$, $U_2/U_0 = 0.1$.

lobe.

• Lobes with $n > (U_0 + \Delta)/2\Delta$ disappear

Direct MI-SF transition before the first

while the first one remains stable

FIGURE 4: $\Delta/U_0 = 0.25$. (a) $U_2/U_0 = 0.0$ (b) $U_2/U_0 = 0.1$

• Direct MI-SF transition before the first lobe.

FIGURE 4: $\Delta/U_0 = 0.25$. (a) $U_2/U_0 = 0.0$ (b) $U_2/U_0 = 0.1$

- Lobes with $n > (U_0 + \Delta)/2\Delta$ disappear while the first one remains stable
- Direct MI-SF transition before the first lobe.
- Also observed in the 1D scalar case by QMC and SCE [Gimperlein et a., Phys. Rev. Lett. 95, 170401 (2005)]

FIGURE 4: $\Delta/U_0 = 0.25$. (a) $U_2/U_0 = 0.0$ (b) $U_2/U_0 = 0.1$

FIGURE 5: $\Delta/U_0 = 0.04$, $U_2/U_0 = 0.1$.

Ferromagnetic regime: all the boundaries lie on fluctuation directions and no BG appears. Distinction between scalar and spinor case with ferromagnetic spin correlations, where disorder in the s = 0 scattering channel only is not enough to produce BG.

FIGURE 5: $\Delta/U_0 = 0.04$, $U_2/U_0 = 0.1$.

Ferromagnetic regime: all the boundaries lie on fluctuation directions and no BG appears. Distinction between scalar and spinor case with ferromagnetic spin correlations, where disorder in the s = 0 scattering channel only is not enough to produce BG.

Summary

Main results:

- Spin-1 2D BH model in presence of diagonal disorder has been studied within the Gutzwiller MF approximation and in the atomic limit
- Antiferromagnetic spin coupling gives a phase diagram qualitatively different from the scalar case
- Odd MI lobes disappear for sufficiently large spin coupling. In this case disorder produces BG of spin singlets
- Disorder can also destroy odd lobes, even if the spin coupling cannot in the clean case. In this case BG is nematic
- Direct SF-MI is observed in some cases (disorder in U₂, a₀, a₂) Perspectives:
 - Cluster MF

 - Spin properties inside the MI phases. Frustration?

[M. Łącki, S. Paganelli, V. Ahufinger, A. Sanpera, J. Zakrzewski, Phys. Rev. A 83, 013605 (2011)]

[S. Paganelli, M. Łącki, V. Ahufinger, J. Zakrzewski, A. Sanpera, arXiv , 1105.2746 (2011)]