Disordered spin-1 Bose-Hubbard model

Simone Paganelli (UAB - Universitat Auténoma de Barcelona)

In collaboration with
M. Ltacki,

J. Zakrzewski
(University of Krakéw)
V. Ahufinger
A. Sanpera
(UAB)

Krakéw 2011

AL

‘Universitat Autonoma de Barcelona



Outline

e Disorder in ultracold bosonic gases.

e Spin-1 interacting bosons in a lattice in the strong interaction regime.
Bose-Hubbard model.

e Effects of the spin interaction:
e Stabilization of Ml phase

e Singlet BG

e Possible occurrence of direct SF-MI transitions for disordered interactions



Strongly correlated bosons

Ultracold atoms in optical lattices:
e Control over the periodic crystal potential and particles’ interactions
e Described by simple and controllable Hamiltonians

e Quantum simulations of complex systems



Strongly correlated bosons

Ultracold atoms in optical lattices:
Control over the periodic crystal potential and particles’ interactions
Described by simple and controllable Hamiltonians
Quantum simulations of complex systems
optical potentials spin degrees of freedom influence the interactions.

Spin-1 atoms (T=0): 23Na, 39K, 87Rb - - -
Model: Spin-1 Bose-Hubbard Hamiltonian

MF /Gutzwiller  [imambekov et al., Phys. Rev. A 68, 63602 (2003) ]
[Kimura et al., Phys. Rev. Lett. 88, 110403 (2005) |
[Pai et al., Phys. Rev. B 77, 14503 (2008) |

QMC [G. Batrouni et al., Phys. Rev. Lett. 102, 140402 (2009) ]

DMRG  [M. Rizzi et al., Phys. Rev. Lett. 95, 240404 (2005) |



Realization of disorder in ultracold atomic gases

Disorder can be produced and controlled:

e Adding a disorder potential created by a speckle radiation pattern to the main
potential
[Horak et al., Phys. Rev. A 58, 3953 (1998) |
[Boiron et al., Eur. Phys. J. D 7, 373 (1999) ]
[Billy et al., Nature 453, 891 (2008) |

e Bicromatic lattices (quasi random)
[Fallani et al., Phys. Rev. Lett. 98, 130404 (2007) ]
[Roati et al., Nature 453, 895 (2008) |
[Damski et al., Phys. Rev. Lett. 91, 080403 (2003) ]
[Diener et al., Phys. Rev. A. 64, 033416 (2001) |

e Using an admixture of different atomic species randomly trapped in sites of the
sample and acting as impurities (Bernoulli potentials)
[Gavish et al., Phys. Rev. Lett. 95, 020401 (2005) ]

e Employing Feschbach resonances in random magnetic fields (Disorder in the inter-
action)
[Gimperlein et al., Phys. Rev. Lett. 95, 170401 (2005) ]



Spin-1 Bose-Hubbard Model

e Alkali atoms in optical lattice.
o Spin degrees of freedom: manifold of Zeeman hyperfine energy levels.

e 23Na 87Rb: nuclear + electronic angular momentum S =3/2®1/2 = 1® 2.
We consider the case S = 1.

e Contact two-body interactions
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Diagonal disorder: 3", Hdis(€z‘) uniform distribution with —A < ¢; < A.
€; sums to u, Uz, Ug, ap or az



Mean-Field approach

Nonperturbative Gutzwiller ansatz (GA)
M
o) =TT 1e:)
i=1

o The coefficients of |¢;), are the variational coefficients to be determined by
minimizing the BH Hamiltonian.

e Corresponds to the Mean Field approximation but takes into account
inhomogeneous lattices.

e Becomes exact for infinite dimension. We consider the 2D case.
e In the dirty case,translational invariance is broken

e Study of averaged density fluctuations and condensate fraction to reconstruct the
phase diagram



Disordered ultracold bosonic gases: strong interaction

e Mott Insulator (MI): incompressible k =

e Superfluid (SF): kK #0, pc #0

= 0, zero condensate fraction p¢

e Bose Glass (BG): k # 0, pc = 0 (degeneracy between states with different

from

densities)
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[Fallani et al., arXiv , 0804.2888 (2008) |

1 chemical potential

U interaction

J: hopping

disorder in the local potential
with fluctuation A
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Dirty boson problem

Is the direct transition between the Ml and SF phases possible in the presence of
disorder?  [M.P. A Fisher et al. , Phys. Rev. B 40, 546 (1989) |

e A rigorous treatment has been given in [L Pollet et al., Phys. Rev. Lett. 103, 140402 (2009) ] by
means of a theorem of inclusions.

e Consequence: If a generic bounded disorder produces a phase transition from a
phase A to another B for a critical value of the bound A, then if one of the
phase is gapless the other one has to be gapless as well. (SF-BG transition)

e Exception: Griffiths transitions. A. does not depend on details of the disorder
distribution. MI-BG trasition given by a concentration of rare regions where
disorder mimics a homogeneous changing in the clean Hamiltonian. Gapless (SF)
domains are distant (no phase coherence).

o If Ac < Egap, near the clean MI-SF boundaries BG phase appears for disorder of
any strength — no direct SF-MI transition.

e What happens if A. remains finite even for vanishing Egqp?



Atomic limit (t —0)
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phase diagram with Us fixed



Atomic limit (t —0)
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Ground state density phase diagram in the

Single site problem — many-body, commen- atomic limit

surate lattice.

Boundaries — Ep(n) = Eg(n + 1)
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Antiferromagnetic case Uz > 0 (Ex. 23Na,
85Rb) 05
e Smaller possible value of S:

S = 0 for even lobes

S = 1 for odd lobes
e Odd lobes shrink and for Uz /Uy > 0.5 08 PE
they disappear.
e Even lobes enlarge and translate for o 1
Us > 0.5. WUy

Ferromagnetic case Uz < 0 (Ex. 37Rb)

Uy/Uy

e Larger possible value of S: S =n
e All lobes shrink. Similar to the scalar case
(Renormalized UO) ® Disorder: fluctuations along some direction
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FIGURE 1: A/Ugy = 0.3.
(3)U2/U0 = 0.02,
(b)Uz/UQ =0.1
(C)UQ/UO =0.3.
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Horizontal fluctuations in the ¢ = 0 phase diagram.

Disorder destroys odd lobes if A > A, = Uy /2 — Uz

Accuracy decreases near the tips. Because:

o MF approximation ([Bissbort, EPL 86, 50007 (2009) |
e Very thin BG region predicted

80, 214519 (2009) |

BG phase:
Nematic for Uz /Up < 0.5
Singlet for Us /Uy > 0.5

[Gurarie et al., Phys. Rev. B
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FIGURE 1:
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(b)U2/Uqg
(c)U2/Uo

AJUy = 0.3.
=0.02,
=0.1

=0.3.



Disorder in Uy

UZ/UU

e Vertical fluctuations in the atomic phase
diagram

e A < |Uz|: no mixing between ferro and
antiferro regions

e Ferro: similar to the scalar case.
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increasing n. , disappearing for for

n > (Ug+ Uz + A)/(24) FIGURE 2: A/Uy = 0.06. Uy = +0.1Uj.
e For Uz/Up < 0.5 A small disorder does not

mix n and n + 1 occupation lobes with n-odd.

Finite A, even for vanishing gap: direct MI-SF

transition
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Disorder in Uy
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antiferro regions
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o Antiferro: the Ml lobes become more unstable

increasing n. , disappearing for for

n>Uo + U2+ 4)/(24) FIGURE 2 A/Up = 0.06. Uz = +0.10p.

e For Uz/Up < 0.5 A small disorder does not

mix n and n + 1 occupation lobes with n-odd.
Finite A. even for vanishing gap: direct MI-SF
transition
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Boundaries of the first lobe lie on fluctuations’
direction Direct MI-SF transition.BG near the
tip.
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Disorder in Uy
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e Lobes with n > (Up + A)/2A disappear
while the first one remains stable

e Direct MI-SF transition before the first
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Disorder in Uy

e Lobes with n > (Up + A)/2A disappear
while the first one remains stable

e Direct MI-SF transition before the first
lobe.

e Also observed in the 1D scalar case by

QMC and SCE  (Gimperlein et a., Phys. Rev. Lett. 95,

170401 (2005) |

- — SCE (TDL)
~ SCE (L=200)
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FIGURE 4: A/Up = 0.25 .

(a)Uz/Uo = 0.0 (b)U2/Uo = 0.1




Disorder in ag

FIGURE 5: A/Uy = 0.04, U2 /Up = 0.1.

Ferromagnetic regime: all the boundaries lie on
fluctuation directions and no BG appears.
Distinction between scalar and spinor case with
ferromagnetic spin correlations, where disorder
in the s = 0 scattering channel only is not
enough to produce BG.
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Summary

Main results:

e Spin-1 2D BH model in presence of diagonal disorder has been studied within the
Gutzwiller MF approximation and in the atomic limit

e Antiferromagnetic spin coupling gives a phase diagram qualitatively different from
the scalar case

e Odd MI lobes disappear for sufficiently large spin coupling. In this case disorder
produces BG of spin singlets

e Disorder can also destroy odd lobes, even if the spin coupling cannot in the clean
case. In this case BG is nematic

e Direct SF-MI is observed in some cases (disorder in Uz, ag, a2)
Perspectives:

e Cluster MF

e Spin properties inside the M| phases. Frustration?

[ M. tacki, S. Paganelli, V. Ahufinger, A. Sanpera, J. Zakrzewski, Phys. Rev. A 83, 013605 (2011) ]
[ S. Paganelli, M. tacki, V. Ahufinger, J. Zakrzewski, A. Sanpera, arXiv , 1105.2746 (2011) ]



