Frustrated kinetics of spinless fermions

Olivier Tieleman

ICFO, Castelldefels (Barcelona), Spain & Institute for Theoretical Physics, Utrecht, the Netherlands

Collaborators: Andre Eckardt, Omjyotti Dutta, Maciej Lewenstein

- Frustrated kinetics
 - > Here: triangular lattice
- Repulsively interacting spinless fermions
- > Time-reversal symmetry breaking
- Experimental realisation?
- Summary

 Wavefunction phase as (classical) spin: frustrated ferromagnet

Depending on frustration:
(A)FM, chiral states

 Wavefunction phase as (classical) spin: frustrated ferromagnet

Depending on frustration:
(A)FM, chiral states

 Wavefunction phase as (classical) spin: frustrated ferromagnet

Depending on frustration:
(A)FM, chiral states

 $|\mathsf{J}'| = |\mathsf{J}|$

 $\mu = 0.5 J$

Now: interactions

Spinless fermions

Spinless fermions

No on-site interactions

Spinless fermions

Only "long-range" interactions

Interactions: momentum-dependent

NN repulsion

Non-local interactions
depend on the relative
momentum

Examples: NN repulsion, dipolar, Yukawa

Interactions: momentum-dependent

Dipolar repulsion

Non-local interactions
depend on the relative
momentum

Examples: NN repulsion, dipolar, Yukawa

Interactions: momentum-dependent

Yukawa attraction

Non-local interactions
depend on the relative
momentum

Examples: NN repulsion, dipolar, Yukawa What do repulsive long-range interactions do to our system?

Mean-field theory

- > Assume Gaussian ground state
- Decompose interaction term by Wick's theorem
 - Anomalous averages vanish due to repulsion
- Calculate corresponding free energy
 - Assume spatial homogeneity
 - Minimise
- Result: effective non-interacting theory
 - Shifted single-particle dispersion

Momentum space

Momentum space

Real space

frustrated kinetics repulsive long-range interactions

time-reversal symmetry breaking

The theory is nice; how about experiments?

How to realise such a system?

- Frustrated hopping:
 - Elliptically shake triangular lattice
 - > Triangular lattice at high filling: holes
 - Diagonally shake square lattice (certain types)
- Repulsive long-range interactions:
 - Dipolar
 - Exchange-induced

Summary

- Ingredients:
 - > Spinless fermions
 - Frustrated kinetics
 - Repulsive interactions
- > Outcome:
 - > Time-reversal symmetry breaking

The end

Thank you for your attention :)

Interactions can also break the lattice symmetry

Charge-density wave

Charge-density wave

