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TOPIC
 General theory of BEC
interferometry
 Treat two mode cases such as
one-component BEC in double wells.

 Theory based on mean field and phase
space methods.

 Include dephasing and decoherence.

 Obtain quantum correlation functions.

 Typical BEC interferometry experiment

Jo  e t a l,  P h ys  R ev  L etts 98 , 030407  (2007 )



 Present work
 One-component BEC in double well.

 Mean field theory based on
Dirac-Frenkel variational principle for
two-mode quantum state.

 Phase space theory based on hybrid
Wigner, P distribution functional.

 New terms in functional Fokker-Planck
and Ito stochastic field equations due to
time dependent mode functions.

 Extends previous work - B J Dalton; Annals
of Physics 326, 668 (2011).

 Future work
 Numerical studies based on mean field
and phase space theory.

 Develop general theory for other two
mode cases such as two component
BEC in a single well.



MOTIVATION
 Bose-Einstein condensates in
cold atomic gases
 All N bosons occupy small number of
single particle states (or modes) – often
only one mode T  Tc.

 Quantum system on a macroscopic
scale N  1 with massive particles
compton~10−30m.

 Long range spatial coherence.

 Controllable experiments - trap
potentials, Feshbach resonances, one
and two component BEC, 1D and 2D
BEC,..

 Ideal for studying quantum
interferometry, decoherence,
entanglement in a macroscopic system of
localisable bosons.

 Suitable system for precision
measurements.



 BEC interferometry
 Based on almost all bosons in one (or
two) modes.

 Involves all topics - QInterf, Decoh,
PrecM, Entang.

 Many types - Ramsey interferometry,
Mach-Zender, Bragg, ..

 Description - quantum correlation
functions - expectation values of products
of bosonic field operators - related to
many-boson position measurements.

 Quantum interference
 Mach-Zender double-well interferometry
experiment shown.

 Essentially a two-mode case.

 Involves starting with BEC in single well
trap, changing trap to (possibly
asymmetric) double-well trap and back to
single well.



 Asymmetry could lead to excitation of
some bosons to higher energy states of
final trap (shown), or to changes to
spatial interference patterns (not shown).
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 Process of one boson excitation
shown with two quantum pathways, both
involving intermediate double well trap.

 Near degeneracy of energy levels for
asymmetric double well facilitates boson
transfer to excited state.

 Superposition of transition amplitudes
gives quantum interference effects.



 Decoherence
 If boson-boson interactions were absent
and BEC isolated, QCF result in clearly
visible interferometric effects.

 Internal boson-boson interactions result
in dephasing (due to transitions within
condensate modes) and decoherence
effects (due to transitions from
condensate modes) that degrade
interference pattern.

 Precision measurement
 BEC interferometry offers possible
precision improvements by a factor given
by N (Kasevich (2002); Dunningham,
Barnett, Burnett (2002)) - Heisenberg
limit.

 Entanglement
 Entangled and non-entangled states
lead to differing BEC interferometry
effects.



SINGLE
COMPONENT BEC
 Hamiltonian

Ĥ  dr 2
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∇̂r†.∇̂r  ̂r†V̂r


g
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̂r†̂r†̂r̂r

 Field operators
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 Quantum correlation functions
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〈̂r1
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†̂sq. . ̂s1
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 Fields time independent, modes time
dependent.



 Mode annihilation, creation
operators

a kt,
a

l
†t  kl

 Mode orthonormality,
completeness

 dxk
∗x, t lx, t  kl ∑

k

kx, tk
∗y, t  x − y

 Mode time dependency
∂a kt
∂t ∑
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Cklt
a lt

∂kx, t
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Ckl
∗ t lx, t

 Coupling constants

Cklt  dx ∂k
∗x, t
∂t  lx, t  iDklt

CklC lk
∗ 0

 The coupling constants play a key role
in the theory.



HYBRID MODEL
 Physics of BEC well below Tc

 Most bosons occupy one or two
condensate modes - describe via mean
field theory based on generalised
Gross-Pitaevskii equations.

 Treat condensate modes via Wigner
distribution function.

 Few bosons occupy non-condensate
modes - quantum effects.

 Treat non-condensate modes via
Positive P distribution function.

 Details: Dalton, ArXiv Cond-Matt 1108.1251.

 References: Steel et al, PRA 58, 4824 (1998);

Gardiner et al, PRA 58, 536 (1998); Dalton, J Phys C

Conf Ser 67, 012059 (2007); Hoffmann et al, PRA 78,

013622 (2008); Dalton, Ann Phys 326, 668 (2011).

 Condensate modes
 Based on Dirac-Frenkel variational
principle.



 Minimise dynamical action

Sdyn  dt
〈∂ t| − 〈|∂ t/ 2i

− |H | /

 Two mode quantum state
 Superposition of N  1 basis states
| N
2 ,k, where N

2 −k and
N
2 k bosons

occupy two modes with mode functions
1 and 2. k  −N/2,−N/2  1, . . ,N/2.

|t ∑
k− N

2

N
2

bkt
N
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, k .

 Basis states are Fock states - these
states are fragmented
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 Basis state amplitudes are bkt.

 Generalised Gross-Pitaevskii eqns for
modes and matrix eqns for amplitudes
are coupled and self-consistent.



PHASE SPACE
THEORY

 Basic idea - separate modes
 Mode annihiln, creation oprs a kt,

a k
†
t

represented by phase space variables
kt, k

t.

 Density operator t represented by
distribution functions P  ,  ∗, t or W  ,  ∗, t
with  ≡ k,k

.

 QCF → phase space averages.

 Normally ordered QCF

Gl1, l2, . . lp;mq, . . ,m2,m1

Tr̂â l1

†
â l2

†
. . â ln

†
âmn . . âm2âm1 

   d2d2 l1
 . .lp

 mq . .m1 P,
,∗,∗

 Phase space integration: k kxiky

  d2td2t ≡  
k

dkxdky
k

dkx
 dky





 Basic idea - fields

 Field annihiln, creation oprs x, 
†
x

represented by field functions x, x.

 Density operator t represented by
distribution functionals P ,  ∗, t or

W ,  ∗, t with ≡ ,.

 QCF → functional integral averages.

 Symmetrically ordered QCF

GWr1rp; sq s1

Tr̂̂r1
†̂rp

†̂sq̂s1

   D2D2 r1. .
rpsq. .s1

W,,∗,∗

 Symmetrically ordered is average of the
products of operators in all orders.

 Modes and fields equivalence
 Fnal, phase space integn equivalent.

  D2D2 F ,  ∗ ≡   d2td2t f  ,  ∗



 F ,  ∗ equivalent to f  ,  ∗.

 Field expansion

x ∑
k

ktkx, t x ∑
k

k
tk

∗x, t

 For n modes, grid of n spatial intervals.

 Key step: phase variable evoln
 Choose same as for mode operators

∂kt
∂t ∑

l

Ckltlt
∂k

t
∂t ∑

l

Ckl
∗ tl

t

 Field fns x, x time independent.

 Formal solution involves unitary matrix

kt∑
l

Ukltl0 k
t ∑

l

Ukl
∗ tl

0

∂Uklt
∂t i∑

m

DkmtUmlt

 Phase space, fnal intn time independent

  d2td2t ≡   d20d20



HYBRID
DISTRIBUTION
FUNCTIONAL

 Condensate, non-condensate
field oprs

̂Cx, t∑
kC

aktkx, t ̂C
† x, t ∑

kC

a
k

†
tk

∗x, t

̂NCx, t∑
kNC

aktkx, t ̂NC
† x, t ∑

kNC

a
k

†
tk

∗x, t

 Mode sums restricted to condensate or
non-condensate modes.

 Sum gives time independent total field
operators ̂  ̂C  ̂NC, ̂

†  ̂C
†  ̂NC

† .

 Separate field oprs time dependent.



 Characteristic functional

 Tr̂WC,C
  ̂NC

  ̂ ̂−NC

̂NC
 exp i  dx ̂NCx, tNC

 x, t

̂−NCexp i  dxNCx, t ̂NC
† x, t

̂WC,C
 exp i  dx ̂Cx, tC

 x, t  Cx, t ̂C
† x, t

where  ≡ C,C
 ,NC,NC

 

 Baker-Haussdorff theorem gives

  exp − 1
2  dxCx, tC

 x, t P 

P   Tr̂C
  ̂NC

  ̂ ̂−NC ̂
−C

 Relates hybrid and normally ordered
characteristic functionals.

 Characteristic functional fields

Cx, t∑
kC

ktkx, t C
 x, t ∑

kC

k
tk

∗x, t

NCx, t∑
kNC

ktkx, t NC
 x, t ∑

kNC

k
tk

∗x, t



 Sum gives time independent total fns
  C  NC.

 Separate fns time dependent.

 Characteristic variable
evolution
 Choose same as mode oprs

∂kt
∂t ∑

l

Ckltlt
∂k
t
∂t ∑

l

Ckl
∗ tl

t

 Condensate, non-condensate
fields

Cx, t∑
kC

ktkx, t C
 x, t ∑

kC

k
tk

∗x, t

NCx, t∑
kNC

ktkx, t NC
 x, t ∑

kNC

k
tk

∗x, t

 Sum gives time independent total field
fns   C  NC,   C

  NC
 .

 Separate fns time dependent.



 Distribution functional

 

     D2CD
2C

 D2NCD
2NC



exp i  dx xx  xx

P ,  ∗

 Distribution functional not unique or
analtyic.

 Functional integration
 ≡ C,C

 ,NC,NC
 

  D2D2 F ,  ∗

≡     D2CD
2C

 D2NCD
2NC

 F ,  ∗

 Quantum correlation functions given as
functional integrals.



FUNCTIONAL
FOKKER-PLANCK

EQUATION
 Key step

∂
∂t ;



  D2 exp i  dx xx  xx ∂∂t P,
∗

 ; ∂∂t
  ∂

∂t −
1
2  dxCx, tC

 x, t ;

 1st term gives usual FFPE terms.

 2nd term gives extra diffusion terms.

− ∂
∂t  dxCx, tC

 x, t 

  dxdy∑
kC

∑
lNC

 l
∗x, tCkltky, tiNCx, tiC

 y, t

   dxdy∑
lC

∑
kNC

 l
∗x, tC lk

∗ tky, tiCx, tiNC
 y,

 Derive FFPE via correspondence rules.



 Correspondence rules

̂̂NCx, t ̂ P ,  ∗  NCx, tP

̂̂ ̂NCx, t P ,  ∗  − 
NC

 x, t
NCx, t P

̂̂NC


x, t ̂ P,∗  − 
NCx, t

NC
 x, t P

̂̂ ̂NC
 x, t P ,  ∗  NC

 x, tP

̂̂Cx, t̂ P ,  ∗  Cx, t 
1
2


C

 x, t
P

̂̂̂Cx, t P ,  ∗  Cx, t −
1
2


C

 x, t
P

̂̂C

x, t̂ P ,  ∗  C

 x, t − 1
2


Cx, t

P

̂̂̂C
 x, t P ,  ∗  C

 x, t  1
2


Cx, t

P

 FFPE written in new notation.



 Notation change
 Field fns: C,C

 ,NC,NC
 → A

 (where
A  C,NC and   −,; A

− A,A
 A

)

 Mode fns: k,k
∗→ Ak

 (where A  C,NC and
  −,; Ak

−  Ak,Ak
  Ak

∗ )

 Phase variables: k,k
→  Ak (where

A  C,NC and   −,; − Ak Ak, Ak Ak
 )

 Coupling constants: Ckl→ CAk Bl
 (where

A  C,NC and   −,;
CAk Bl
−  CAk Bl,CAk Bl

  CAk Bl
∗ )

 Characteristic fields: C,C
 ,NC,NC

 → A


 Characteristic variables: k, k
→  Ak

 Examples:

A

x, t∑

k

 AktAk

x, t

∂ Akt

∂t ∑
Bl

CAk Bl


t Blt

CAk Bl


t  dx ∂Ak
−
x, t
∂t Bl


x, t



 Functional FPE
 KEY RESULT

∂
∂t P,

∗ 

−∑
A

 dx 

A

x, t

AA

x P,∗

 1
2 ∑

A,B

  dxdy 

A

x, t


B

 y, t
EAB


x, y P,∗

 Drift term involving AA

x.

 Diffusion term involving EAB


x, y.

EAB


x, y  DAB


x, y

 1
2
ACBNC − ∑

k

∑
l

Ak

x, tCAkBl


tBl

 y, t

 1
2
BCANC − ∑

k

∑
l

Bl
 y, tCBlAk

 tAk

x, t

 Hybrid fnal FPE has same drift vector
AA

x but different diffusion matrix EAB


x, y

to diffusion matrix DAB


x, y obtained via
∂
∂t ̂ term.



 Extra terms involve time dependent
mode fns and coupling coefficients.

 Extra terms involve only condensate to
non-condensate mode couplings.

 Diffusion matrix symmetric
EAB


x, y  EBA


y, x.

 FFPE terms involving third and higher
order derivatives arising via ∂

∂t ̂ term
discarded due to scaling as higher
powers of 1/ N .



ITO STOCHASTIC
FIELD EQUATIONS
 Basic idea
 Replace non-stochastic fields
C,C

 ,NC,NC
  by stochastic fields

sC
s ,C

s,NC
s ,NC

s 

C
s x, t∑

kC

k
s tkx, t C

sx, t ∑
kC

k
stk

∗x, t

NC
s x, t∑

kNC

k
s tkx, t NC

s x, t ∑
kNC

k
stk

∗x, t

 Stochastic feature due to replacing
non-stochastic phase variables k,k

 by
stochastic phase variables k

s ,k
s.

 Phase space and stochastic average of
F  to be same for arbitrary F .



 Phase space fnal average F 
t

F 
t
  D2  F P ,  ∗

 Stochastic average of M samples  i
s.

F s 1M ∑
i1

M

F i
s

 Key step: phase space fnal
average
∂
∂t F 

t

  D2  F  ∂∂t P , 
∗   D2  ∂∂t F P , 

∗

 1st term gives usual terms from FFPE.

 2nd term gives extra drift-like terms.

∂
∂t F  ∑

A

 dx 

A

x, t

F  
∂A

 x, t
∂t

 Apply fnal integn by parts gives eqn of
motion for phase space fnal average of
F x, t



∂
∂t F 

t


∑
A

 dx 

A

x, t

F AA

x


∑A  dx 

A
x,t

F 

 dy∑
B≠A

∑
kl

Ak

x, tCAkBl


Bl
−
y, tB


y, t


∑A  dx 

A
x,t

F 

 dy∑
B≠A

∑
kl

Bl

x, tCAkBl

−
Ak
−
y, tA


y, t

 1
2 ∑

A,B

  dxdy 

A

x, t


B

 y, t
F EAB


x, y

 Extra terms involve time dependent
mode fns and coupling coefficients.

 Extra terms involve only condensate to
non-condensate mode couplings.



 Stochastic field eqns

A
 s
x, tGA


xt ∑

a

NAa

x 

t

tt
dt1Γat1

∂
∂t A

 s
x, tGA


x ∑

a

NAa

xΓat

 Variation A
 s
x, t  A

 s
x, t  t − A

 s
x, t

 Forms GA

x, NAa


x to be found.

 Gaussian-Markoff random noise Γat
Γat1  0

Γat1Γbt2  abt1−t2

Γat1Γbt2Γct3  0

Γat1Γbt2Γct3Γdt4  Γat1Γbt2Γct3Γdt4

 Γat1Γct3Γbt2Γdt4

 Γat1Γdt4Γbt2Γct3

 Decorrelation for function HA
s
x, t

HA
s
x, t1Γat2Γbt3Γct4. .Γkt l

 HA
s
x, t1 Γat2Γbt3Γct4. .Γkt l t1 t2, t3, . . , t



 Key step: stochastic average
 Change in stochastic functional Fs

due to changes A
 s
x, t in stochastic

fields

F sx, t   sx, t − Fsx, t

  dx∑
A

A
s
x, t

Fs

A
s
x, t


x

 1
2   dxdy ∑

A,B

A
s
x, tB

sy, t
2Fs

A
s
x, tB

sy, t


 1st term: stochastic average involves
GA

x.

 2nd term: stochastic average involves
NAa

x.

 Carry out stochastic averages using
Gaussian-Markoff properties gives eqn of
motion for stochastic average of Fsx, t



∂
∂t F

sx, t 

 dx∑
A


Fs

A
s
x, t


x
GA

x

 1
2   dxdy ∑

A,B


2Fs

A
s
x, tB

sy, t


x,y
Nx NTyA



 Relation Ito eqn and FFPE
 KEY RESULT

 For F 
t
and Fsx, t to be same for

arbitrary F  gives

GA

xAA


x

  dy∑
B≠A

∑
kl

Ak

x, tCAkBl


Bl
−
y, t B


y, t

  dy∑
B≠A

∑
kl

Bl

x, tCAkBl

−
Ak
−
y, t A


y, t

and



Nx NTyA,B
,

EAB


x, y

DAB


x, y

 1
2
ACBNC −∑

k

∑
l

Ak

x, tCAkBl


tBl

 y, t

 1
2
BCANC −∑

k

∑
l

Bl
 y, tCBlAk

 tAk

x, t

 Existence of NAa

x depends on

factorisation of diffusion matrix

Nx NTyA,B
, ∑

a

NAa

xNBa

 y  EAB


x, y

 Determine NAa

x via KAka



NAa

x∑

k

KAka
 t Ak


x, t

EAB


x, y∑
kl

Ak

x, tEAkBl

 t Bl

y, t

Exists KAka
 due symmetry EAkBl


 EBlAk



∑
a

KAka


KBla
  EAkBl





Takagi factorisation (1925).

 Stochastic field interpretation
 Sum of classical and noise field terms

∂
∂t A

 s
x, t ∂

∂t A
sx, t

class
 ∂
∂t A

sx, t
noise

∂
∂t A

 s
x, t

class
GA


x

∂
∂t A

 s
x, t

noise
∑

a

NAa

xΓat

 Stochastic averages: classical field
∂
∂t A

 s
x, t

class
 0

 Non stochastic to all orders.

 Stochastic averages: noise field
∂
∂t A

 s
x, t

noise
 0

∂
∂t A

 s
x1, t1 noise

∂
∂t B

 sx2, t2 noise

t1−t2 EAB


x1, t1,2; x2, t1,2

 All even orders non-zero stochastic
averages related to new diffusion matrix
EAB
 .



 Noise field not Gaussian-Markoff.

 Classical field and noise field terms are
both related to standard drift AA


x and

diffusion terms DAB


x, y in the usual FFPE
but in addition there are extra terms
involving time dependent mode fns and
coupling coefficients.

 Extra terms involve only condensate to
non-condensate mode couplings.



CONCLUSION
 Hybrid phase space theory of single
component BEC developed, where
condensate modes treated via Wigner
and non-condensate modes treated via
Positive P distribution functionals.

 Theory treats case where mode
functions are time dependent, as for
applications in BEC interferometry.

 Functional Fokker-Planck equation has
been obtained.

 Drift terms are same as in standard
treatments with time independent modes.

 Diffusion terms contain extra
contributions depending on time
dependent mode functions and coupling
constants involving integrals of mode
functions and their time derivatives.

 Equivalent Ito equations for stochastic
condensate and non-condensate fields
are found, the fields are sum of classical
and noise fields.



 Classical fields given by drift term in
FFPE, augmented by extra terms
depending on time dependent mode
functions and coupling constants.

 Noise fields related to diffusion term in
FFPE in standard way, diffusion term
containing extra contributions due to time
dependent modes.

 Only coupling constants between
condensate and non-condensate modes
involved for both Ito and FFPE.

 Stochastic properties of noise fields
given in terms of diffusion matrix in
FFPE, with only stochastic averages of
products of even numbers of noise fields
are non-zero.

 Noise fields are non Gaussian-Markoff.


