PHASE SPACE THEORY OF
BOSE-EINSTEIN CONDENSATES

AND
TIME-DEPENDENT MODES

B J DALTON

ARC Centre for Quantum-Atom Optics
and
Centre for Atom Optics and Ultrafast
Spectroscopy
Swinburne University of Technology
Melbourne, Victoria 3122, Australia



TOPIC

¢ General theory of BEC
Interferometry

- Treat two mode cases such as
one-component BEC in double wells.

- Theory based on mean field and phase
space methods.

- Include dephasing and decoherence.
- Obtain quantum correlation functions.
- Typical BEC interferometry experiment
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¢ Present work
- One-component BEC in double well.

- Mean field theory based on
Dirac-Frenkel variational principle for
two-mode quantum state.

- Phase space theory based on hybrid
Wigner, P+ distribution functional.

- New terms in functional Fokker-Planck
and Ito stochastic field equations due to
time dependent mode functions.

- Extends previous work - B J Dalton; Annals
of Physics 326, 668 (2011).

¢ Future work

- Numerical studies based on mean field
and phase space theory.

- Develop general theory for other two
mode cases such as two component
BEC in a single well.



MOTIVATION

¢ Bose-Einstein condensates in
cold atomic gases

- All N bosons occupy small number of
single particle states (or modes) — often
only one mode (T < T.).

- Quantum system on a macroscopic
scale N > 1 with massive particles
/lcompton"'lo_som-

- Long range spatial coherence.

- Controllable experiments - trap
potentials, Feshbach resonances, one
and two component BEC, 1D and 2D
BEC,..

- Ideal for studying quantum
Interferometry, decoherence,
entanglement in a macroscopic system of
localisable bosons.

- Suitable system for precision
measurements.



¢ BEC interferometry

- Based on almost all bosons in one (or
two) modes.

- Involves all topics - Qinterf, Decoh,
PrecM, Entang.

- Many types - Ramsey interferometry,
Mach-Zender, Bragg, ..

- Description - quantum correlation
functions - expectation values of products
of bosonic field operators - related to
many-boson position measurements.

¢ Quantum interference

- Mach-Zender double-well interferometry
experiment shown.

- Essentially a two-mode case.

- Involves starting with BEC in single well
trap, changing trap to (possibly
asymmetric) double-well trap and back to
single well.



- Asymmetry could lead to excitation of
some bosons to higher energy states of
final trap (shown), or to changes to
spatial interference patterns (not shown).

- Process of one boson excitation
shown with two quantum pathways, both
involving intermediate double well trap.

- Near degeneracy of energy levels for
asymmetric double well facilitates boson
transfer to excited state.

. Superposition of transition amplitudes
gives quantum interference effects.



¢ Decoherence

- If boson-boson interactions were absent
and BEC isolated, QCF result in clearly
visible interferometric effects.

- Internal boson-boson interactions result
in dephasing (due to transitions within
condensate modes) and decoherence
effects (due to transitions from
condensate modes) that degrade
interference pattern.

¢ Precision measurement

- BEC interferometry offers possible
precision improvements by a factor given
by /N (Kasevich (2002); Dunningham,
Barnett, Burnett (2002)) - Heisenberg
limit.

¢ Entanglement

- Entangled and non-entangled states
lead to differing BEC interferometry
effects.



SINGLE

COMPONENT BEC
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¢ Field operators
[P, ¥'(s)] =5(r-s)
¢ Quantum correlation functions
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¢ Mode expansion
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- Fields time independent, modes time
dependent.



¢ Mode annihilation, creation
operators

[k, 8T (®)] =8y

¢ Mode orthonormality,
completeness
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¢ Mode time dependency
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¢ Coupling constants

Cui(t)= Idx ¢k( Y pyx,) = Dt
Ck|+C|k=O

- The coupling constants play a key role
in the theory.



HYBRID MODEL

¢ Physics of BEC well below T

- Most bosons occupy one or two
condensate modes - describe via mean
field theory based on generalised
Gross-Pitaevskil equations.

- Treat condensate modes via Wigner
distribution function.

- Few bosons occupy non-condensate
modes - quantum effects.

- Treat non-condensate modes via
Positive P distribution function.

- Details: Dalton, ArXiv Cond-Matt 1108.1251.

- References: Steel et al, PRA 58, 4824 (1998);
Gardiner et al, PRA 58, 536 (1998); Dalton, J Phys C
Conf Ser 67, 012059 (2007); Hoffmann et al, PRA 78,
013622 (2008); Dalton, Ann Phys 326, 668 (2011).

¢ Condensate modes

- Based on Dirac-Frenkel variational
principle.



- Minimise dynamical action
{{0iD| D) — (D| 01 D)}/ 2i

Son = Jdt ~(offijo)

¢ Two mode quantum state

- Superposition of N + 1 basis states

| &, k), where 5k and -+k bosons
occupy two modes with mode functions
01 and ¢,. (k = -N/2,-N/2 +1,..,+N/2).

N
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- Basis states are Fock states - these
states are fragmented
N_ N,
N ) @ ®)HE™Y (@) 2 0)
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- Basis state amplitudes are bt).

- Generalised Gross-Pitaevskii egns for
modes and matrix egns for amplitudes
are coupled and self-consistent.




PHASE SPACE

THEORY

¢ Basic idea - separate modes

- Mode annihiln, creation oprs a(t), a[i(t)
represented by phase space variables
ak(t), ap ().

- Density operator p(t) represented by
distribution functions P(o, o, t) OF W(a, a*,1)
With o= oy, -

- QCF - phase space averages.
- Normally ordered QCF

G(Il,lz,..lp;mq,..,m2,m1)

/\I\T AT AT 2~ Py ~
=Tr(paj, a,..aj,@m,-- amyam;)

= I j d%0d%at 01|+1--0t|+p omg- - 0my P(a, a+,a*,a+*)

- Phase space integration: ax= akx-+ioky

I I e et = I I | [ doterdony | [ ooy
K K



¢ Basic idea - fields
- Field annihiln, creation oprs $x), ¢ ()
represented by field functions y(x), v*(x).

- Density operator p(t) represented by
distribution functionals P[vy, v *,t] Or

Wiy, y* ]Wlthw AT

— —

- QCF - functional integral averages.
- Symmetrically ordered QCF
GW(rl...rp;Sq... Sl)
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- Symmetrically ordered is average of the
products of operators in all orders.

¢ Modes and fields equivalence
- Fnal, phase space integn equivalent.
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- F[y, v*] equivalent to f(a,

o, o
—_ - —_ —

*).

- Field expansion

W0 = D ak®d ) v = D af oD
K K

- For n modes, grid of n spatial intervals.

¢ Key step: phase variable evoln
- Choose same as for mode operators
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- Field fns y(x), y*(x) time independent.
- Formal solution involves unitary matrix

k(b= Z Uk (g (0) ok (1) = Z Uii(®oj (0)

UL Z Dim(DU (0

- Phase space, fnal intn time independent
J- j d2a(t)da™(t) = J- j d2a(0)d%a*(0)



HYBRID

DISTRIBUTION
FUNCTIONAL

¢ Condensate, non-condensate
field oprs

Pox = D Akt TEXH = D A0k H
keC keC

INCO D= D Bk FReb = D A 0ok
keNC keNC

- Mode sums restricted to condensate or
non-condensate modes.

- Sum gives time independent total field
operators ¥ = ¢ + ¥y, ¥ = Wi+ ¥ e,

- Separate field oprs time dependent.



¢ Characteristic functional
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- Baker-Haussdorff theorem gives
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- Relates hybrid and normally ordered
characteristic functionals.

¢ Characteristic functional fields

0= D) &bt EEXD = D & O (x
keC keC

ENCOG D= D G ERcoub = D g s (x. b
keNC keNC



- Sum gives time independent total fns

r—

= = EZc + =NC.
- Separate fns time dependent.
¢ Characteristic variable

evolution
- Choose same as mode oprs
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¢ Condensate, non-condensate
flelds

ek D= D ak®b ) vEKD = D af O (b

keC keC
e D= D ak® 6D wieOh = D af (005 (x,
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- Sum gives time independent total field
fnsy =yc+yne, vy =yE+yic.
- Separate fns time dependent.



¢ Distribution functional
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- Distribution functional not unigue or
analtyic.

- Functional integration
— { + + }
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- Quantum correlation functions given as
functional integrals.



FUNCTIONAL

FOKKER-PLANCK
EQUATION

¢ Key step

= [ 02y expa | ax o= 0 + 200w 00) LRIy, Y
LR - -

= A5 S P+ % {—% jdec(X, HECKX, t))}x[g; P!
- 1st term gives usual FFPE terms.
- 2nd term gives extra diffusion terms.
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- Derive FFPE via correspondence rules.



¢ Correspondence rules
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- FFPE written in new notation.



¢ Notation change

. ] U
- Field fns: v, vé, wyes vic— va (Where
A=CNCand pu=—+ ya= yaya= va)
- Mode fns: ¢,,4;~ ¢ (Where A = ¢,NC and
==+ dak= dak: dAk= PAK)
- Phase variables: ok, o~ o, o (Where
A=CNCand p=—+ o p= aak @, A= Gak)
- Coupling constants: cy- ¢, g, (where
A=C/NCand = - +;
Cax = Caxais C,Kk BI — C;k BI)
- Characteristic fields: =c, =&, 2nc, Efic— 22
- Characteristic variables: ¢, &~ ¢,

- Examples:
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¢ Functional FPE
. KEY RESULT

SRV -
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- Drift term involving A} ().
- Diffusion term involving EXg(x,y).
EAB(X,Y) = DAg(X.Y)

+ %5ACSBNC 6#_‘/ (Z Z (I):lal\k(X, t)CXkB| (t)(l)‘él(Y: t) )
K I

+ %5805ANC Ov—u (Z Z OB1(Y: DC Bl Ak (DdAKX, ) )
K I

Hybrid fnal FPE has same drift vector
A (x) but different dlffu5|on matrix Exg(x,y)
to diffusion matrix D/, z(x,y) obtained via
< p term.



- Extra terms involve time dependent
mode fns and coupling coefficients.

- Extra terms involve only condensate to
non-condensate mode couplings.

- Diffusion matrix symmetric

Ea(x.Y) = Eg(y.%).

- FFPE terms involving third and higher
order derivatives arising via %[) term

discarded due to scaling as higher
powers of 1/,/N .



ITO STOCHASTIC

FIELD EQUATIONS

¢ Basic idea
- Replace non-stochastic fields

v={ve,v& vne Ve s PY stochastic fields
4
ZSZ{\V?:’\V?:+’WSNC’\|’S|\|+C
Ve D= D ke vE D = Y af kb
keC keC
Ve b= D 000D wiich = D of o5 (x,
keNC keNC

- Stochastic feature due to replacing
non-stochastic phase variables oy, o, by
stochastic phase variables o}, a}".

- Phase space and stochastic average of
Flv] to be same for arbitrary Fly .

—



- Phase space fnal average <F[g}]>t

<F[\|f]>t — [ 02y FLyIPLy, v

e e

- Stochastic average of M samples ;.
—

¢ Key step: phase space fnal
average

& {Fw),

- [ D2y FLy1-2PLy, y*) + [ D2y ZFLyIPLY, v "]

— — — — —

- 1st term gives usual terms from FFPE.

- 2nd term gives extra drift-like terms.

5 OYa(x, 1)

O Fly v dx Fly] x
ot HAJ. swhot) = ot

- Apply fnal integn by parts gives egn of
motion for phase space fnal average of
Fly (x.0]
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- Extra terms involve time dependent
mode fns and coupling coefficients.

- Extra terms involve only condensate to
non-condensate mode couplings.



¢ Stochastic field egns

t+ot
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a
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a
- Variation syl (x,t) = (v (x,t+5t) — yh (x1)
- Forms G (x), Nx,(x) to be found.
- Gaussian-Markoff random noise I';(1)
Ta(ty) = 0
Fa(t)p(ty) = dabd(ty—t2)
TaltI () (t3) = O
Fa(t)Cp ) (t3)0g(ty) = TatPIp(ty) Fe(tz)(ty)
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- Decorrelation for function Huy' (x,t))
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¢ Key step: stochastic average
- Change in stochastic functional F[y®]

due to changes sy (x,t) in stochastic
fields

Flw > (x,t) + 8y (X, )] — FLw®(x,t)]

SF [y "]
— j dx Z 5\|!XS(X, Y ( uS\V_) )x
UA
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2 S
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S
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by oya (X, 1)owg’(y, 1)

- 1st term: stochastic average involves
u
GA(X).

- 2nd term: stochastic average involves
u

- Carry out stochastic averages using
Gaussian-Markoff properties gives egn of
motion for stochastic average of F[y®(x,t)]
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¢ Relation Ito egn and FFPE
- KEY RESULT

- For <F[\|;]>t and F[w_)s(x,t)] to be same for

—

arbitrary F[y] gives
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- Existence of Ny, (x) depends on
factorisation of diffusion matrix

NGONTWIAE = D NAa(ONE,(Y) = EAB(X.Y)
a

. Determine N4, (x) via K4, ,

Naa ()= Z Kika (1) dak(x b
k

EAB ()= D Ok, h Encar (1) 081 (v,
ki

Exists Ky, due symmetry Ea.g= Egiax
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Takagi factorisation (1925).

¢ Stochastic field interpretation
- Sum of classical and noise field terms

0 HS _( O, nus 0 1S
ot VA (X,t)_( ot Ya (X’ t))claSS + (at Ya (Xat))

O Hus u
(Lvhxn)  =Gh

noise
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- Stochastic averages: classical field

0 uS ) _
ot VA .1 class 0

- Non stochastic to all orders.

- Stochastic averages: noise field

0 us )
— t =0
ot VA (0 noise

0 uS ) (i VS )
ot VA (X1.t1) noise \ Ot Ve (X2:t2) noise

[TRY
=0(t1—t2) Eap(Xq,t12:%2,112)

- All even orders non-zero stochastic

averages related to new diffusion matrix
uv

EAB.



- Noise field not Gaussian-Markoff.

- Classical field and noise field terms are
both related to standard drift A’(x) and
diffusion terms Dz (x,y) in the usual FFPE
but in addition there are extra terms
iInvolving time dependent mode fns and
coupling coefficients.

- Extra terms involve only condensate to
non-condensate mode couplings.



CONCLUSION

- Hybrid phase space theory of single
component BEC developed, where
condensate modes treated via \Wigner
and non-condensate modes treated via
Positive P distribution functionals.

- Theory treats case where mode
functions are time dependent, as for
applications in BEC interferometry.

- Functional Fokker-Planck equation has
been obtained.

- Drift terms are same as in standard
treatments with time independent modes.

- Diffusion terms contain extra
contributions depending on time
dependent mode functions and coupling
constants involving integrals of mode
functions and their time derivatives.

- Equivalent Ito equations for stochastic
condensate and non-condensate fields
are found, the fields are sum of classical
and noise fields.



- Classical fields given by drift term in
FFPE, augmented by extra terms
depending on time dependent mode
functions and coupling constants.

- Noise fields related to diffusion term in
FFPE in standard way, diffusion term
containing extra contributions due to time
dependent modes.

- Only coupling constants between
condensate and non-condensate modes
involved for both Ito and FFPE.

- Stochastic properties of noise fields
given in terms of diffusion matrix in
FFPE, with only stochastic averages of
products of even numbers of noise fields
are non-zero.

- Noise fields are non Gaussian-Markoff.



