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Introduction

We combine three areas of ultracold physics :

- ultracold dipolar gases

- spinor gases in a lattice (in the context of Ml and SF transition)
- orbital superfluid

The main issue is to account for the spin degree of
freedom as a dynamical variable in the lattice.

When spin dynamics takes place it could lead to the
appearance of an orbital (P, +iP) superfluid.

Moreover it introduces an additional degree of control
and leads to variety of different stable phases (PhD for small

particle number).
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Assumptions

2D square optical lattice with Cr atoms

Limit basis to two states coupled by dipolar interaction at every lattice
site

me=2; l=1
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Limiting subspace of essential states is a cruical approximation and it is
possible only due to a weakness of dipolar interactions.



What’s the influence
of weak dipolar interactions?

» Equlibration of the energy difference

E,— E, = Edip



Spin dynamic triggered by
dipolar interactions

There are several channels of dipolar collisions for two atomes.
Fortunately we can choose the desired channel by a proper
adjustment of the resonant external magnetic field.
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Hamiltonian of the system
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What’s the influence of weak dipolar interactions

____________________________________________________________

Equlibration of the energy difference
Ep— Eq = Egip

For 1 particle states average per site
11,0) < [0,1)

g1, B The lowest order process which

contributes to the transfer between

these state is a sequence of three
events :

Ja
1,0) = [2,0)

2,0) = [0,2)




Fisher method to find thermodynamically stable phases
of the system in a choosen subspace

H, = _]az a; &; — Zb Hi= -] Z(a?ff)ai‘F a; $a; )
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Boundaries between Ml and SF are obtained from :

(’—b l TT[ ae —B (Ho+ Hl)] Z is the grand canonical partition
= 11m function which reduces to a single

a

(@) p— Z(ﬁ) lowest energy state contribution.

To lowest order we get a linear and homogenous set of equations.




Single particle states in magnetic field
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Phase Diagram —

regions of stability of different posible phases of the system
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Final conclusions

Dipolar interactions can lead to novel phases, in particular
to the appearance of orbital (p,+ipP,) superfluids in the
b - component.

The experiments with ultra weak magnetic fields with Cr
atoms in the lattice are under extensive studies of
B. Laburthe-Tolra group in Paris (PrA 81, 042716 (2010)).
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System IS in superfluid phase (the mean occupation is fractional)
Large tunneling supports the ‘standard’ SF, and
orbital (P, +iP) SF,.

When decreasing tunneling - particles enter SF, .
The grey area corresponds to the ‘stable vacuum’.
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Lower tunneling — MI, (n,= 0) , SF,

There is an additional stable phase —
small region of the Mott insulator in
the vortex component MIl, (n, =1).




Final conclusions

Even the case of one particle on average per site can
introduce various novel phases to the system (especially
the orbital superfluids in the excited energy state).

Weak dipolar interaction can be resonantly tuned to
couple the ground Wannier state to the excited one with
orbital angular momentum.

In future ...

When two particles occupy the same site, it is more
favorable for dipolar transfer.
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System is in superfluid Jy/Uj 1107

phase ( the mean occupation is fractional )

Large tunneling supports the ‘standard’ SF, and
orbital (P, +iP) SF,.

When decreasing tunneling - particles enter SF, .

The grey area corresponds to the ‘stable vacuum’.
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phase — small region of the Mott insulator in the vortex
component Mlb ( | particle devide oneself liken,=1,n,=0).

Why doesn’t MI, exist ?
Why do particles choose to be in the b component?

Athough the energies are equal at the resonance, larger
tunneling in the vortex states favoure the b-component.



Final conclusions

Even the case of one particle on average per site can
introduce various novel phases to the system.

Weak dipolar interaction can be resonantly tuned to
couple the ground Wannier state to the excited one with
orbital angular momentum.

System realises the scenarios in which energy of the
system is lower - favourable phases are the orbital

( P, * i P)) superfluid or vortex Mott Insulator phases.
In future ...

When two particles occupy the same site, it is more
favorable for dipolar transfer.



