A Quantum Simulator for Relativistic Field Theories and Topological Insulators

Leonardo Mazza

Max-Planck-Institut für Quantenoptik, München

– Quantum Technologies Conference II – Krakow - September 2, 2011

1 / 23

Leonardo Mazza (MPQ)

A Quantum Simulator for Lattice Theories

Collaborators and Supervisors

- Max-Planck-Institut für Quantenoptik, München
 - Matteo Rizzi
 - J.Ignacio Cirac
- Universität Ulm
 - Alejandro Bermudez
- Université Libre de Bruxelles
 Nathan Goldman
- Universidad Complutense de Madrid
 Miguel Ángel Martín-Delgado
- ICREA and ICFO, Barcelona
 - Maciej Lewenstein

2 A Superlattice-Based Quantum Simulator

- Simulation of Relativistic Lattice Theories and Topological Insulators
- 4 Conclusions and Perspectives

Introduction

2 A Superlattice-Based Quantum Simulator

3 Simulation of Relativistic Lattice Theories and Topological Insulators

4 Conclusions and Perspectives

Quantum Simulator

Quantum Simulator:

- attacking numerically-hard problems
- engineering of a model with a real system
- information obtained via measurement

Wanted: a controllable quantum system

- highly detailed microscopic knowledge
- high external tunability
- good possibility of measuring the system

one possibility: COLD ATOMS!

- $\bullet\,$ quantum system (T $\sim\,$ nK)
- good microscopic knowledge
- increasing possibility of manipulating the system

Leonardo Mazza (MPQ)

Quantum Simulations with Optical Lattices

Exploiting a gas trapped in an optical lattice

Hubbard model:
$$e^-$$
 in crystals
 $\hat{H} = -J \sum_{\langle ij \rangle, \sigma} \hat{c}^{\dagger}_{i,\sigma} \hat{c}_{j,\sigma} + U \sum_i \hat{n}_{i,\downarrow} \hat{n}_{i,\uparrow} - \sum_{i,\sigma} \mu_i \hat{n}_{i,\sigma}$

See e.g. work in groups of Bloch and Esslinger

Hubbard model: 2 fields

- e[−] with spin ↑
- e[−] with spin ↓

Cold atoms: take two hyperfine species

- 40 K with hyperfine spin $m_F = -9/2$
- 40 K with hyperfine spin $m_F = -7/2$

Feshbach resonances

More Complicated: the Dirac Equation

Simulate the **Dirac Hamiltonian** in 3+1 dimensions $\hat{H} = \int d\mathbf{r} \ \hat{\Psi}^{\dagger}(\mathbf{r}) \left(c\boldsymbol{\alpha} \cdot \mathbf{p} + mc^{2}\beta \right) \hat{\Psi}(\mathbf{r}) \quad \text{with } \alpha_{\nu} \text{ and } \beta: 4x4 \text{ matrices}$

Many-Component Theory $\hat{\Psi}(\mathbf{r})$ is 4 component spinor $\{\hat{\psi}_1, \hat{\psi}_2, \hat{\psi}_3, \hat{\psi}_4\}$

4 atomic sublevels $\{ \bullet, \bullet, \bullet, \bullet \}$

Interactions

Non-interacting theory ightarrow Feshbach resonances tune to zero the interactions

Discretization of the continous Hamiltonian $\hat{\Psi}^{\dagger}\alpha_{1}\partial_{1}\hat{\Psi}(\mathbf{x},t) \rightarrow \sum_{\tau,\tau'} [\alpha_{1}]_{\tau,\tau'}\hat{c}_{\mathbf{x},\tau}^{\dagger}\hat{c}_{\mathbf{x}+\Delta\mathbf{x}_{1},\tau'}$ When α_{1} is non-diagonal, the hopping process changes the spin

How to do spin-flipping hopping?

Leonardo Mazza (MPQ)

A Quantum Simulator for Lattice Theories

September 2, 2011

Motivation

Our Work

Development of a three-dimensional setup able to implement a generic hopping operator for a multi-species atomic gas trapped in a lattice potential.

Realization of the following Hamiltonian:

$$\hat{H}_{\rm sys} = \sum_{\mathbf{r}\boldsymbol{\nu}} \sum_{\tau\tau'} t_{\boldsymbol{\nu}} \hat{c}^{\dagger}_{\mathbf{r}+\boldsymbol{\nu}\tau'} [U_{\boldsymbol{\nu}}]_{\tau'\tau} \hat{c}_{\mathbf{r}\tau} + \sum_{\mathbf{r}} \Omega \hat{c}^{\dagger}_{\mathbf{r}\tau'} [\Lambda]_{\tau'\tau} \hat{c}_{\mathbf{r}\tau} + \text{H.c.}$$

Control on:

- D, the optical lattice dimension
- 2) t_{ν} , the tunneling strength
- U_ν, the spin-dependent hopping operator
- **9** Ω, Λ , on site transitions

- Non-interacting is easy no need of quantum simulation
- First step towards the **interacting** case highly non-trivial

Introduction

2 A Superlattice-Based Quantum Simulator

3 Simulation of Relativistic Lattice Theories and Topological Insulators

4 Conclusions and Perspectives

Alkali Atoms - ⁴⁰K

• L: orbital angular momentum of the electron

- $\hat{\mathbf{S}}$: spin of the electron
- $\hat{\boldsymbol{J}}=\hat{\boldsymbol{L}}+\hat{\boldsymbol{S}}:$ total angular momentum of the electron
- Î: angular momentum of the nucleus
- $\hat{\textbf{F}} = \hat{\textbf{J}} + \hat{\textbf{I}}:$ hyperfine spin of the atom

Optical Superlattice

The trapping potential: $V(\mathbf{x}) = \sum_{i} -V_0 \left[\cos^2(kx_i) + \cos^2(2kx_i)\right]$

Two dimensions

- Square lattice of main minima (blue)
- Presence of secondary minima in the middle of each link (light blue)
- Similar in 3D
- Wannier functions localized in main and secondary minima
- All the hyperfine levels are trapped with this potential

Laser-Assisted Hopping: Sketch

• ⁴⁰K: Fermionic System for Relativistic Theories

• Realization of diagonal and non-diagonal hopping

- Diagonal hopping breaking spin-symmetry
- Couplings Ω realised via optical Raman transitions
- Momentum transfer parallel to the hopping needed

Thanks to U.Schneider (LMU & MPQ, München) Other ideas on laser-assisted hopping: Jaksch and Zoller, NJP 5 56 (2003); Gerbier and Dalibard, NJP 12 033007 (2010)

Laser Assisted Hopping: Link Model

Develope an effective link model

- Quantify the fidelity of the lasser-assisted hopping $|m_F = 9/2, k = 1\rangle \rightarrow |m_F = 9/2, k = 3\rangle$
- $\bullet\,$ Many couplings induced by the Raman transfer Ω
- $S_{i,j}$ is the overlap factor between Wannier functions

Laser-Assisted Hopping: Time-Evolution of the Link Model

- Exact real-time evolution of the link model
- Initial population in $|F = 9/2, m_F = 9/2 \rangle$
- Study of two species system: diagonal and off-diagonal hopping

Laser-Assisted Hopping: Time-Evolution of the Link Model

- Exact real-time evolution of the link model
- Initial population in $|F = 9/2, m_F = 9/2\rangle$
- Study of two species system: diagonal and off-diagonal hopping
- Staggering of the lattice required

Leonardo Mazza (MPQ)

Existence of a hyerarchy of energies in atoms and optical lattices exploitable for laser-assisted tunneling

- Hyperfine Splitting: 1 10 GHz
- Zeeman Splitting: 10 100 MHz
- Lattice-bands gaps: 50 100 kHz
- Staggering: 20 kHz

Effective Coupling: $\sim 100~\text{Hz}$

Approximations

- use of Wannier functions as eigenstates of the system
- continuum states not considered

OK only if

- band width \ll detuning
- detuning \sim depth of the optical potential

otherwise:

- spurious next-nearest-neighbours couplings
- problems with the overlap between neighbouring wavefunctions

The Final Model

$$\hat{H}_{\rm sys} = \sum_{\mathbf{r}\boldsymbol{\nu}} \sum_{\tau\tau'} t_{\boldsymbol{\nu}} \hat{c}^{\dagger}_{\mathbf{r}+\boldsymbol{\nu}\tau'} [U_{\boldsymbol{\nu}}]_{\tau'\tau} \hat{c}_{\mathbf{r}\tau} + \sum_{\mathbf{r}} \Omega \hat{c}^{\dagger}_{\mathbf{r}\tau'} [\Lambda]_{\tau'\tau} \hat{c}_{\mathbf{r}\tau} + \text{H.c.}$$

• Hopping part: described laser-assisted tunneling

• On-site part: on-site raman couplings

GOAL:

Simulation of quadratic theories

- Relativistic Theories
- 2 Topological Insulators

"Elegant" Approach For every model I want to quantum-simulate I find a clever mapping to an optical lattice

Drawbacks: models for which I cannot find the needed clever mapping

"Systematic" Approach - THIS WORK If I can engineer whatever hopping and on-site quadratic term I can simulate almost all the quadratic theories

Drawbacks: space-dependencies and not-cubic lattices

"Elegant approach": see e.g. works by: Pachos, Garcia-Ripoll, Lepori, Trombettoni, Ruostekoski, Schützold, Solano, etc etc., o o

2 A Superlattice-Based Quantum Simulator

Simulation of Relativistic Lattice Theories and Topological Insulators

4 Conclusions and Perspectives

3D Massless Dirac Fermions

The Hamiltonian to be simulated:

- D-dimensional optical lattice
- translationally invariant hopping operators U_{ai} ∈ SU(N_D)
- π -flux regime: $\phi_{\nu} = \pi/2$

D	U_{a_1}	U_{a_2}	U_{a_3}
1	$e^{i\phi_1\sigma_x}$		
2	$e^{i\phi_1\sigma_x}$	$e^{i\phi_2\sigma_y}$	
3	$e^{i\phi_1\sigma_z\otimes\sigma_x}$	$\mathrm{e}^{\mathrm{i}\phi_2\sigma_z\otimes\sigma_y}$	$\mathrm{e}^{\mathrm{i}\phi_3\sigma_z\otimes\sigma_z}$

Results:

- 8 points in the 3D Brillouin Zone: the energy bands touch *K*_d
- Half-filled lattice: Fermi surface are 8 isolated points
- Low energy excitations: described by a Hamiltonian of massless Dirac fermions

$$H_{\rm eff} = \sum_{\mathbf{d}} \sum_{\mathbf{p}_{\mathbf{d}}} \Psi^{\dagger}(\mathbf{p}_{\mathbf{d}}) H_{\rm DI}^{\mathbf{d}} \Psi(\mathbf{p}_{\mathbf{d}}), \qquad H_{\rm DI}^{\mathbf{d}}(\mathbf{p}_{\mathbf{d}}) = c \boldsymbol{\alpha}^{\mathbf{d}} \cdot \mathbf{p}_{\mathbf{d}},$$

3D Massive Dirac Fermions and beyond

Fermion doubling problem Nielsen-Ninomiya theorem

- The number of Dirac points is always even in a lattice theory
- Symmetry breaking required to get an odd number:
 - chiral symmetry for D odd $\{H_{DI}^{d}, \Gamma_{1}\} = 0$
 - time-reversal for D even $\Gamma_2^{\dagger} \left[\mathcal{H}_{\mathrm{DI}}^{\mathsf{d}}(-\mathbf{p}_{\mathsf{d}}) \right]^* \Gamma_2 = \mathcal{H}_{\mathrm{DI}}^{\mathsf{d}}(\mathbf{p}_{\mathsf{d}})$

This correspond to modification of the parameters of the theory

Can we do more?

- from massless to massive case
- individual tailoring of the masses for each of the 8 Dirac modes
- engineering of Wilson fermions
- relativistic topological insulators

Bermudez, LM, Rizzi, Goldman, Lewenstein, Martín-Delgado PRL 105 190404 (2010)

LM, Bermudez, Goldman, Rizzi, Martín-Delgado, Lewenstein arXiv:1105.0932

Topological Insulators

- Insulating bulk bands: Gapped bulk spectrum
- **② Topological order:** Topological invariant characterizing some observable
- **Bedge states:** Gapless edge excitations

Non interacting models: $\hat{H} = \sum_{\alpha\beta} \hat{\Psi}^{\dagger}_{\alpha} \mathbb{H}_{\alpha\beta} \hat{\Psi}_{\beta} + \mathrm{H.c.}$ with $\mathbb{H}_{\alpha\beta}$ a matrix

Example: 1D Creutz ladder

$$H_{\text{AIII}} = \sum_{n} K \mathrm{e}^{-\mathrm{i}\theta} a_{n+1}^{\dagger} a_n + K \mathrm{e}^{\mathrm{i}\theta} b_{n+1}^{\dagger} b_n + K b_{n+1}^{\dagger} a_n + K a_{n+1}^{\dagger} b_n + M a_n^{\dagger} b_n + \text{H.c.}$$

Class	Name	Т	С	S
Α	Unitary	0	0	0
AIII	Chiral unitary	0	0	1
AI	Orthogonal	$^{+1}$	0	0
AII	Symplectic	$^{-1}$	0	0
CII	Chiral Symplectic	$^{-1}$	-1	1

Class	d = 1	QS	d = 2	QS	d = 3	QS
A	0		Z	yes	0	
AIII	Z	yes	0	Ŭ	Z	yes
AI	0		0		0	-
AII	0		\mathbb{Z}_2	yes	\mathbb{Z}_2	yes
CII	$2\mathbb{Z}$	yes	0	-	\mathbb{Z}_2	yes

Interactions? Study their effect with a quantum simulation!

LM, Bermudez, Goldman, Rizzi, Martín-Delgado, Lewenstein arXiv:1105.0932

Leonardo Mazza (MPQ)

A Quantum Simulator for Lattice Theories

September 2, 2011

Superlattice based quantum simulator

- Existence of a hyerarchy of energies in atoms and optical lattices exploitable for laser-assisted tunneling.
- Possibility of engineering diagonal and non-diagonal hopping
- Possibility of studying complicated non-interacting theories

Perspectives:

- Controlled introduction of interaction via Feshbach resonances
 - Interacting Relativistic Theories
 - Interacting Topological Insulators
- Look for the simplest interesting model to be simulated

Bermudez, LM, Rizzi, Goldman, Lewenstein, Martín-Delgado PRL **105** 190404 (2010) LM, Bermudez, Goldman, Rizzi, Martín-Delgado, Lewenstein arXiv:1105.0932

Leonardo Mazza (MPQ)

A Quantum Simulator for Lattice Theories

September 2, 2011 2

< 🗗 🕨 🔸

2