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Quantum Optics Group @ ITPA, 
Vilnius University  
Research activities: 

  Light-induced gauge potentials for cold atoms 
(both Abelian and non-Abelian) 

  Ultra cold atoms in optical lattices 
  Slow light (with OAM, multi-component, …) 
  Graphene 
  Metamaterials 
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Quantum Optics Group @ ITPA, 
Vilnius University  
Research activities: 

  Light-induced gauge potentials for cold atoms 
  Cold atoms in optical (flux) lattices 

This talk: 
A combination of first two topics 



OUTLINE 
  Optical lattices (for ultracold atoms) 
  Light-induced gauge potentials 
  Optical flux lattices (OFL):  Non-staggered 

magnetic flux   
  Ways of producing of OFL   
  Conclusions 



Optical lattices (ordinary):  [Last 10 years] 
  A set of counter-propagating light beams      

(off resonance to the atomic transitions) 
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3D cubic optical lattice: 

I. Bloch, Nature Phys. 1, 23 (2005) 
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Optical lattices (more sophisticated) 
  Triangular or hexagonal optical lattice using 

three light beams (propagagating at 1200) 

  (a) Polarisations are perpendicular to the plane 
 Triangular lattice 

  (b) Polarisations are rotating in the plane          
 Hexagonal (spin-dependent) lattice 
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propagating light beams making 450  and 900 

          Proposal to produce such lattice: 



Optical lattices (more sophisticated) 
  Line-centered (Lieb) lattice – several counter-

propagating light beams making 450  and 900 

  Formation of a flat band and Dirac cones in the 
dispersion 

  Interesting many-body effects:  
  More – talk by Tomas Andrijauskas (next)  



Optical lattices 
  Analogies with the solid state physics 

  Fermionic atoms ↔ Electrons in solids 
  Atoms in optical lattices – Hubbard model 
  Simulation of various many-body effects  

  Advantage : 
  Freedom in changing experimental parameters 

that are often inaccessible in standard solid state 
experiments 



Optical lattices 
  Analogies with the solid state physics 

  Fermionic atoms ↔ Electrons in solids 
  Atoms in optical lattices – Hubbard model 
  Simulation of various many-body effects  

  Advantage : 
  Freedom in changing experimental parameters 

that are often inaccessible in standard solid state 
experiments 

  e.g. number of atoms, atom-atom interaction, 
lattice potential 
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Trapped atoms - electrically neutral particles 

  No direct analogy with magnetic properties due 
to electrons in solids 

  A possible method to create an effective magnetic 
field: 
 Rotation  Coriolis force   
 (Mathematically equivalent to Lorentz force)  



ROTATION 

  Can be applied to utracold atoms both in usual 
traps and also in optical lattices 

(a)  Ultracold atomic   
cloud (trapped): 

(b) Optical lattice: 
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Trap rotation 
Hamiltonian in the rotating frame  
[see e.g. A. Fetter, RMP 81, 647 (2009)]  
                                            Trapping potential 

or                                          rotation vector                                               

Effective vector potential        Centrifugal potential  
(constant Beff~Ω)                           (anti-trapping)  
Coriolis force (equivalent to Lorentz force) 



Trap rotation:  
Summary of the main features 

  Constant Beff:        Beff ∼ Ω   
  Trapping frequency: 
                         Landau problem 



Effective magnetic fields without rotation 
  Using (unconventional) optical lattices  

 Initial proposals: 
  J. Ruostekoski, G. V. Dunne, and J. Javanainen, 

Phys. Rev. Lett. 88, 180401 (2002) 
  D. Jaksch and P. Zoller, New J. Phys. 5, 56 (2003) 
  E. Mueller, Phys. Rev. A 70, 041603 (R) (2004)  

  Beff  is produced by inducing an assymmetry 
in atomic transitions between the lattice sites. 

  Non-vanishing phase for atoms moving along 
a closed path on the lattice  

  → Simulates non-zero magnetic flux → Beff ≠ 0 
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  Optical lattices 

  D. Jaksch and P. Zoller, New J. Phys. 5, 56 (2003) 
  J. Dalibard and F. Gerbier, NJP 12, 033007 (2010). 
  -Ordinary tunneling along x direction (J). 
  -Laser-assisted tunneling between atoms in different 

internal states along y axis (with recoil along x).  

                                        J  

                               J’exp(-ikx1)         J’exp(ikx2) 

                                        J  
  Non-vanishing phase for the atoms moving over a 

plaquette:  S=k(x2-x1)=ka 
  → Simulates non-zero magnetic flux  

x

y



Effective magnetic fields without rotation 

  Optical lattices:  
The method can be extended to create Non-

Abelian gauge potentials 
 (Laser assisted, state-sensitive tunneling) 
  K. Osterloh, M. Baig, L. Santos, P. Zoller and M. 

Lewenstein, Phys. Rev. Lett. 95, 010403 (2005) 



Here: Creation of Beff using 
geometric potentials 

  Distinctive features: 
  No rotation is necessary  
  No lattice is needed  
  Yet lattices can be an important ingredient in 

creating   Beff  using geometric potentials    
Optical flux lattices  



Geometric potentials 
  Emerge in various areas of physics 

(molecular, condensed matter physics etc.) 
   First considered by Mead, Berry, Wilczek 

and Zee and others in the 80’s (initially in the 
context of molecular physics). 

  More recently – in the context of motion of 
cold atoms affected by laser fields  
 (Currently: a lot of activities)  

  Advantage of such atomic systems: 
possibilities to control and shape gauge 
potentials by choosing proper laser fields. 
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freedom and also center of mass motion. 
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Creation of Beff using geometric potentials 

 ( r-dependent “dressed” eigenstates) 

 (includes r-dependent atom-light coupling) 

Atomic dynamics taking into account both internal degrees of 
freedom and also center of mass motion. 

(for c.m. motion) 

Coupling between 
internal and center of 
mass motion 



For instance: Two atomic internal states 

  Position-dependent detuning Δ(r) ≡ Ωz  
  Position-dependence of the Rabi frequencies of atom-

light coupling Ω± (r) ≡ Ωx±iΩy 

  Atom-light Hamiltonian: 

  

€ 

ˆ H 0 r( ) = −
Ωz /2 Ωx − iΩy

Ωx + iΩy −Ωz /2
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

(2×2 matrix) 



Creation of Beff using geometric potentials 

 ( r-dependent “dressed” eigenstates) 

 (includes r-dependent atom-light coupling) 

Atomic dynamics taking into account both internal degrees of 
freedom and also center of mass motion. 

(for c.m. motion) 

Coupling between 
internal and center of 
mass motion 



Creation of Beff using geometric potentials 

 ( r-dependent “dressed” eigenstates) 

 (includes r-dependent atom-light coupling) 

Atomic dynamics taking into account both internal degrees of 
freedom and also center of mass motion. 

(for c.m. motion) 

Coupling between 
internal and center of 
mass motion 



Creation of Beff using geometric potentials 

 ( r-dependent “dressed” eigenstates) 

 (includes r-dependent atom-light coupling) 

Atomic dynamics taking into account both internal degrees of 
freedom and also center of mass motion. 

(for c.m. motion) 

Coupling between 
internal and center of 
mass motion 



  Adiabatic atomic energies  

  Full state vector: 

          – wave-function of the atomic centre of mass motion 
in the n-th atomic internal “dressed” state    

n=1 

n=2 

n=3 

r 
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Non-degenerate state with n=1 
  Adiabatic atomic energies  

  Full state vector: 

  Adiabatic approximation 

  What is the equation of motion for            ?   

          – wave-function of the atomic centre of mass motion 
in the n-th atomic internal “dressed” state    

n=1 

n=2 

n=3 

r 
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Adiabatic approximation: 

Equation of motion:  

                           with      

n=1 

n=2 

n=3 

r 

 

€ 

ˆ H =
p−A11( )2

2M
+ V (r) + ε1(r)

Vector potential              appears 
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Adiabatic approximation: 

Equation of motion:  

                           with      

n=1 

n=2 

n=3 

r 

 

€ 

ˆ H =
p−A11( )2

2M
+ V (r) + ε1(r)

Vector potential              appears.   What is mising?   

€ 

A11 ≡A

Non-degenerate state with n=1 

Brings a vector potential 
Projecting 

Action of the momentum operator: 



Adiabatic approximation: 

Equation of motion:  

                           with      

n=2 

r 
n=1 

n=3 

Exact: 

 

€ 

ˆ H =
p−A11( )2

2M
+ V (r) + ε1(r) +Φ(r)

Vector potential              & scalar potential     

€ 

A11 ≡A

!!! 

Non-degenerate state with n=1 

!!! 

€ 

Φ≡Φ(r) =
1
2M

A1nA n1
n= 2

N

∑
!!! 

Using completeness 
Action of the momentum operator: 
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Action of the momentum operator: 
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Equation of motion:  
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- effective vector potential (Berry connection) 

- effective scalar potential 
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Φ

Momentum associated with   

Kinetic energy of atomic micro-motion 
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Adiabatic approximation: 
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Degenerate states with n=1 and  n=2  

          – wave-function of the atomic centre of mass motion 
in the n-th atomic internal “dressed” state (n=1,2)    



Adiabatic approximation: 
n=3 

r 
n=1,  n=2 

n=4 

Degenerate states with n=1 and  n=2  

          – wave-function of the atomic centre of mass motion 
in the n-th atomic internal “dressed” state (n=1,2)    

- two-component atomic wave-function 
(spinor wave-function) 
 Quasi-spin 1/2 

€ 

Ψ(r, t) =
Ψ1(r,t)
Ψ2(r,t)
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

Repeating the same procedure … 
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Adiabatic approximation: 

Equation of motion:  

n=3 

r 
n=1,  n=2 

n=4 
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2M
+V (r) +ε1(r)

         appears  due to position-dependence of  
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Degenerate states with n=1 and  n=2  

- effective vector potential 

- effective magnetic field (non-trivial situation if          ) 

-  two-comp. atomic  
  wave-function 

2x2 matrix 

2x2 matrix 

If  Ax, Ay, Az do not commute, B≠0  even if A is constant !! 
 Non-Abelian gauge potentials are formed                                                                  
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Tripod setup: 
Non-Abelian light-induced gauge potentials 

for centre of mass motion of dark-state atoms: 
(Due to the spatial dependence of the dark states) 

J. Ruseckas, G. Juzeliūnas and P.Öhberg, and M. 
Fleischhauer, Phys. Rev. Letters 95, 010404 (2005). 

 (two degenerate dark states) 



  Drawback of the tripod scheme: degenerate 
dark states are not the ground atomic 
dressed states  collision-induced loses 

  Closed loop setup overcomes this drawback: 

D. L. Campbell, G. Juzeliūnas and I. B. Spielman, arXiv1102.3945 (2011); 
(to appear in PRA) 



  Arrangement of laser fields: 

  Closed loop setup overcomes this drawback: 

Two degenerate internal ground states  
 non-Abelian gauge fields for ground-state manifold 
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  (a single atomic dressed state         ) 
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  Here – Abelian gauge potentials  
  (a single atomic dressed state         ) 

 Large possibilities to control and shape the 
potential A by changing the light beams 

n=1 

n=3 

n=2 

A  appears  due to position-dependence of  



Light induced effective magnetic field 
can be due to 

1.  Spatial dependence of laser amplitudes 
2.  Spatial dependence of atom-light detuning 
3.  Spatial dependence of both the laser 

amplitudes and also atom-light detuning  
 (e.g. optical flux lattices) 



Light induced effective magnetic field 
can be due to 

1.  Spatial dependence of laser amplitudes 



Effective magnetic field due to  
spatial dependence of laser amplitudes. 
Three level Λ-type atoms: 
  Initial idea:  

  R. Dum and M. Olshanii, Phys. Rev. Lett. 76, 1788 (1996). 
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Effective magnetic field due to  
spatial dependence of laser amplitudes. 
Three level Λ-type atoms: 
  Initial idea:  

  R. Dum and M. Olshanii, Phys. Rev. Lett. 76, 1788 (1996). 

  Schemes giving non-zero effective magnetic 
field (for atoms in dressed states):  
  G. Juzeliūnas and P. Öhberg, PRL 93, 033602 (2004);  
  G. Juzeliūnas, J. Ruseckas, P. Öhberg, and M. Fleischhauer, 

Phys. Rev. A 73, 025602 (2006). 
  Günter, K. J., M. Cheneau, T. Yefsah, S. P. Rath, and  

 J. Dalibard, Phys. Rev. A 79, 011604 (2009). 
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Effective magnetic field due to  
spatial dependence of laser amplitudes. 
Three level Λ-type atoms: 
  Initial idea:  

  R. Dum and M. Olshanii, Phys. Rev. Lett. 76, 1788 (1996). 

  Schemes giving non-zero effective magnetic 
field (for atoms in dressed states):  
  G. Juzeliūnas and P. Öhberg, PRL 93, 033602 (2004);  
  G. Juzeliūnas, J. Ruseckas, P. Öhberg, and M. Fleischhauer, 

Phys. Rev. A 73, 025602 (2006). 
  Günter, K. J., M. Cheneau, T. Yefsah, S. P. Rath, and  

 J. Dalibard, Phys. Rev. A 79, 011604 (2009). 
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Ω2(r) 

1 2
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Counter-propagating beams with 
spatially shifted profiles 

€ 

Φ≈ kL

[G. Juzeliūnas, J. Ruseckas, P. Öhberg, and M. Fleischhauer, 
Phys. Rev. A 73, 025602 (2006).] 

Total magnetic flux is proportional to the sample length L:  

L  

(one can not increase the total flux in the transverse direction)  

  No lattice 

No translational symmetry for shifted beams (in the transverse direction):  



Light induced effective magnetic field 
due to 

  Spatial dependence of laser amplitudes 
  Spatial dependence of atom-light detuning 



§ 



§ 



§ 

Position-dependent detuning δ 



§ 

Position-dependent detuning δ=δ(y)            B≠0 



Light induced effective magnetic field 
due to 
  Spatial dependence of atom-light detuning 

 Magnetic flux is again determined by the sample 
length (rather than the area)! 

 One can not create large magnetic flux 

Detuning δ=δ(y) 



Effective gauge potentials – due to 
position-dependence of both  
  A) Detuning and  

B) Laser amplitudes     
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Effective gauge potentials – due to 
position-dependence of both  
  A) Detuning and  

B) Laser amplitudes     
e.g.  Optical flux lattices 

  N. R. Cooper, Phys. Rev. Lett. 106, 175301 (2011) 



Effective gauge potentials – due to 
position-dependence of both  
  A) Detuning and  

B) Laser amplitudes     
e.g.  Optical flux lattices 

  N. R. Cooper, Phys. Rev. Lett. 106, 175301 (2011) 

Magnetic flux is determined by the area (!!!) of atomic cloud  



Effective gauge potentials – due to 
position-dependence of both  
  A) Detuning and  

B) Laser amplitudes     
e.g.  Optical flux lattices 

  N. R. Cooper, Phys. Rev. Lett. 106, 175301 (2011) 

  Related earlier work: 
  A. M. Dudarev, R. B. Diener, I. Carusotto, and Q. Niu, 

Phys. Rev. Lett. 92, 153005 (2004). 

Magnetic flux is determined by the area (!!!) of atomic cloud  



Two atomic internal states 

  Position-dependent detuning Δ(r) ≡ Ωz  
  Position-dependence of the Rabi frequencies of atom-

light coupling Ω± (r) ≡ Ωx±iΩy 



Two atomic internal states 

  Position-dependent detuning Δ(r) ≡ Ωz  
  Position-dependence of the Rabi frequencies of atom-light 

coupling Ω± (r) ≡ Ωx±iΩy 

  Atom-light Hamiltonian: 
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ˆ H 0 r( ) = −
Ωz /2 Ωx − iΩy

Ωx + iΩy −Ωz /2
⎛ 
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(2×2 matrix) 



Two atomic internal states 

  Position-dependent detuning Δ(r) ≡ Ωz  
  Position-dependence of the Rabi frequencies of atom-light 

coupling Ω± (r) ≡ Ωx±iΩy 

  Atom-light Hamiltonian: 
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Ωx=Ωy=0,    No coupling between the atomic states 
 Ordinary atomic trap or lattice  



Two atomic internal states 

  Position-dependent detuning Δ(r) ≡ Ωz  
  Position-dependence of the Rabi frequencies of atom-light 

coupling Ω± (r) ≡ Ωx±iΩy 

  Atom-light Hamiltonian: 

Ωx=Ωy=0,    No coupling between the atomic states 
 Ordinary atomic trap or lattice  
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Two atomic internal states 

  Position-dependent detuning Δ(r) ≡ Ωz  
  Position-dependence of the Rabi frequencies of atom-light 

coupling Ω± (r) ≡ Ωx±iΩy 

  Atom-light Hamiltonian: 
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ˆ H 0 r( ) = −
Ωz /2 Ωx − iΩy

Ωx + iΩy −Ωz /2
⎛ 

⎝ 
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⎞ 
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Ωx≠0,  Ωy≠0,    Coupling between the atomic states  

€ 

χ j r( )

€ 

ˆ H 0 r( ) has position-dependent eigenstates            ,   j=1,2     



  Effective vector potential for atomic motion in 
the lower dressed state         :          

n=1 

n=3 

n=2 

€ 

ˆ H 0 r( ) χ j r( ) = ε j r( ) χ j r( ) (j=1,2),     
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ˆ H 0 r( ) = −
Ωz /2 Ωx − iΩy

Ωx + iΩy −Ωz /2
⎛ 

⎝ 
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⎞ 

⎠ 
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€ 

A r( ) =

2
cosθ −1( )∇φ

Ω

Ωy 

Ωx 

Ωz 

€ 

θ

€ 

φ

See, e.g.:     J.Dalibard, F. Gerbier, G. Juzeliūnas and P. Öhberg.  
To appear in Rev. Mod. Phys. (ArXiv1008.5378). 



 Optical flux lattices 
Two-level system: 

[N. R. Cooper, PRL 106, 175301 (2011)] 
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 Optical flux lattices 
Two-level system: 

[N. R. Cooper, PRL 106, 175301 (2011)] 
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Periodic coupling                and periodic detuning   
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(Unconventional optical lattice) 
      
 Periodic vector potential  
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Periodic dressed state               

Zero magnetic flux over the elementary cell: 
                         (for adiabatic motion of atoms) 
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Periodic dressed state               

Zero magnetic flux over the elementary cell: 
                         (for adiabatic motion of atoms) 

No optical flux lattice ???!!!   
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Zero magnetic flux over the elementary cell: 
                         (for adiabatic motion of atoms) 
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 Optical flux lattices 
Two-level system: 
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Periodic dressed state               

Zero magnetic flux over the elementary cell: 
                         (for adiabatic motion of atoms) 

No optical flux lattice ?!  (Unless AB tubes) 

AB = Aharonov - Bohm     



Optical flux lattices 
Two-level system: 
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Two-level system: 
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 Optical flux lattices (square) 
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 Optical flux lattices (square) 

Non-zero background magnetic flux over an elementary cell 

Two AB tubes at 
                      and                

i.e. at   

€ 

Ωx + iΩy = 0

€ 

Ωz = −1
€ 

Ωx =Ωcos(xπ /a)

€ 

Ωy =Ωcos(yπ /a)

€ 

Ωz =Ωsin(xπ /a)sin(yπ /a)

€ 

sin(xπ /a)sin(yπ /a) = −1

€ 

cos(xπ /a) = cos(xπ /a) = 0

Magnetic flux is determined by the area (!!!) of atomic cloud 

Additionally periodic potential (minima shown in green). 



OFL can be produced 

  Using optical transitions between two atomic 
long-lived internal state with opposite 
polarisability (anti-magic wave-length)  

N. R. Cooper, PRL 106, 175301 (2011) 
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OFL can be produced   
  Using Raman transitions between the 

hyperfine states of alkali atoms (and specially 
shaped laser fields) 
Triangular optical flux lattice 
N. R. Cooper and J. Dalibard, arXiv:1106.0820. 

Square optical flux lattice: 
G. Juzeliunas and I.B. Spielman, in preparation 



Characteristic features of light-
induced gauge potentials 

  No rotation of atomic gas 
  No lattice is necessary 
  Effective magnetic field can be shaped by 

choosing proper laser beams 
  The magnetic flux can be made proportional 

to the area using the optical flux lattices 
  Extension to the non-Abelian case 



Thank you! 


