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BEC in a double well
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Hamiltonian
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Dynamics

i
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dt
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The annihilation operators equations of  motion are

For a macroscopic BEC, we can write

We have the equations for

Ṅjl, �̇jl



Two-mode model
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Since the total number of  atoms is conserved, we 
can get rid of  one pair of  conjugate variables

For two modes,



Two-mode dynamics
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Phase space diagram
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Four-mode model

Nz1 = NL1 �NR1

Nz0 = NL0 �NR0

Nz2 = (NL0 + NR0)� (NL1 + NR1)

Once again, we can get rid of  one pair of  conjugate 
variables since N is constant

There are many possible choices for a new basis

To highlight self-trapping in each level, we choose



Regimes
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Situation 1
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Pure tunnelling

Identical behaviour for 
both energy levels

Different Rabi frequencies

50% of  atoms in each level
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Situation 2

Strong U0, negligible U1

Tunnelling in the excited 
modes

Self-trapping in the ground 
modes 

Initial conditions in 
stationary states
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Situation 3

Strong U1, stronger U0

Self-trapping in the excited 
modes

Strong self-trapping in the 
ground modes 

Initial conditions in 
stationary states
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Mode manipulation
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z0(0) = 0.45
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Conclusion

Tunnelling and self-trapping can be observed in 
higher modes

U01 influences the dynamics even when no atoms 
jump energy levels

The initial population in the ground modes can 
strongly influence the excited modes


